首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
一种基于TSMC 0.18μm CMOS工艺的5.1GHz频率下的CMOS低噪声放大器。采用源极电感负反馈共源共栅电路结构,使放大器具有较高的增益和反相隔离度,保证较高的品质因数和信噪比。利用ADS对电路进行调试和优化,设计出低功耗、低噪声、高增益、高稳定性的低噪声放大器。通过ADS软件仿真得到较好的结果:在1.8V电压下,输入输出匹配良好,电路增益为16.12dB,噪声系数为1.87 dB,直流功耗为9.84mA*1.8V。  相似文献   

2.
放大器的噪声及低噪声电路研究   总被引:1,自引:0,他引:1  
抑制噪声是改善大性能途径之一,本文用混合π型噪声模型,讨论了共发射极放大器的主要噪声来源,最佳源电阻和最小噪声系数,指出在多级放大器中降低总噪声系数的方向,设计了一种低噪声偏置电路,对放大器的设计个有一定的参考价值。  相似文献   

3.
基于0.18μm SiGe BiCMOS工艺,设计了一款应用于WLAN 802.11频段的低噪声放大器(LNA).采用了共射级的两级级联结构,发射极运用电感负反馈,有效地提高了增益和线性度.仿真结果表明,在5~6GHz工作频段内,小信号增益S21达20.5 dB,噪声系数NF低于2 dB,正向传输系数S11小于-19 dB和反向传输系数S22小于-18 dB,实现了较好的输入输出匹配.  相似文献   

4.
基于IM3谐波分量抵消和噪声抵消技术,本文设计了一种两级差分低噪声放大器(LNA)电路。第一级采用跨导提高交叉耦合推拉式放大器以实现输入匹配和噪声的降低,第二级电路同时抵消了第一级电路中的IM3谐波分量和晶体管的热噪声。基于标准的0.13μm CMOS工艺对其进行设计仿真,结果表明该LNA在5.8 GHz频率下,噪声系数为1.2 dB,增益为16.7 dB,线性度输入三阶截止点IIP3高达9 dBm,同时输入输出匹配良好。  相似文献   

5.
针对信号频段为3.1~10.6GHz的超宽带系统射频前端,提出一种基于0.13μm CMOS技术的低噪声放大器设计与实现.该放大器采用两级结构,通过第一级单端型电阻反馈和第二级单端转差分型电压缓冲器的级联设计,在获得足够的信号功率增益的同时,能够实现超宽带范围内的输入匹配.整体电路仿真结果表明:在3.1~10.6GHz的工作频段,电压增益为23.2dB,输入回波损耗小于-13dB.在6GHz时噪声系数最小值为2.4dB,最大值为2.7dB,输入三阶交调截取点(IIP3)为-11.9dBm.在1.2V电源电压下,该低噪声放大器功耗为12.2mW,芯片面积为0.32mm2.  相似文献   

6.
该文根据对晶体管结构和低噪声放大器原理的分析,利用ADS软件设计了一个低噪声放大器。通过采用HBT晶体管,设计偏置电路、负反馈电路和输入输出匹配电路,实现在2GHz频率下,低噪声放大器绝对稳定,增益大于13dB,噪声系数低于1.0dB,输出驻波比小于1.3,输入驻波比小于2.5。  相似文献   

7.
采用0.15μm砷化镓赝配高电子迁移率晶体管工艺,设计一款频率400 MHz~2.4GHz宽带低噪声放大器。采用两级级联结构,将前级放大器的输入阻抗匹配到最佳噪声阻抗得到最小噪声;后级放大器采用负反馈结构得到较宽的工作频带;级间引入失配补偿方法,即在晶体管增益滚降处引入高频增益,使得放大器工作频带拓宽,提高带内平坦度。仿真结果表明,该低噪声放大器工作频率为400 MHz~2.4GHz,频带内噪声系数为1dB,增益为34dB,增益平坦度为3.1dB,回波损耗优于-10dB,满足了低噪声、超宽带和高平坦度的要求。  相似文献   

8.
介绍了CMOS低噪声放大器的几种结构,研究了该放大器的噪声性能和相关制约因素,分析了电感反馈共源共栅结构,并在此基础上,讨论了在低功耗技术中采用的电流偏置复用结构,最后展望了CMOS低噪声放大器的发展趋势.  相似文献   

9.
基于噪声抵消的有源匹配SiGe HBT低噪声放大器设计   总被引:1,自引:1,他引:0  
基于Jazz0.35μmSiGe工艺,设计了一种满足2G、3G和WIMAX标准的有源匹配SiGe HBT低噪声放大器.利用共基极晶体管输入阻抗小和共集电极晶体管输出阻抗较小的特点,通过选取晶体管的结构和偏置电流,实现了输入、输出有源阻抗匹配.由于未采用占芯片面积大的电感,减少了芯片面积,芯片面积(含焊盘)仅为0.33mm×0.31 mm;由于共基极晶体管的噪声系数比共射极晶体管的噪声系数高,采用噪声抵消结构减少了其引入噪声.低噪声放大器在(0.6~3)GHz工作频带内,增益为17.8~19.2dB,增益平坦度为±0.7dB;有源输入、输出匹配良好;在整个频段内,无条件稳定.  相似文献   

10.
采用0.18μmCMOS工艺设计应用于802.11aWLAN的5.8GHzLNA.,给出了采用ADS的模拟结果:在中心频率5.8 G Hz处,LNA功率增益为16.97dB,阻抗匹配系数S11小于-18dB,噪声系数(NF)为2.3dBm,输入1dB压缩点为-23.33dBm.输出1dB压缩点为-7.361dBm,功耗小于15mW.  相似文献   

11.
针对实际产品中ESD保护产生的寄生效应对低噪声放大器噪声性能的影响,通过详细的理论分析,提出了一种具有ESD保护的低噪声放大器的噪声优化方法,并给出了具体的设计公式。采用该优化方法设计的低噪声放大器可以接近或等于单个晶体管的最小噪声系数。在0.25μm CMOS工艺下进行了仿真,仿真结果表明设计的低噪声放大器可以在不同的功耗下接近最小噪声系数,从而验证了提出的噪声优化方法的有效性。  相似文献   

12.
基于100 nm硅基氮化镓(GaN)工艺,本文设计并实现了一款工作频段为20~26 GHz且增益平坦的可变增益低噪声放大器(VGLNA).该放大器采用三级共源级级联来实现高增益,并通过调节第二、第三级的栅极偏置实现增益控制.测试结果表明,该放大器在工作频段内实现了超过20 dB的增益可变范围和±1.5 dB的增益平坦度,在增益可变范围内功耗为126 mW至413 mW.在最大增益状态下,该放大器在整个频段内可实现大于20 dB的小信号增益且噪声系数(NF)为2.95 dB至3.5 dB,平均输出1dB压缩点(OP1dB)约为14.5 dBm.该芯片的面积为2 mm~2.  相似文献   

13.
为了降低低噪声放大器(Low Noise Amplifier, LNA)的噪声系数(Noise Figure, NF),提出了一种LNA衬底电阻噪声抑制方法。根据金属-氧化物半导体场效应晶体管(Metal-Oxide Semiconductor, MOS)的衬底寄生电阻在源衬电容间产生噪声电流的原理,利用MOS管衬底电阻的小信号模型得出衬底噪声电流在大于一定的衬底电阻阻值时存在反比关系,采用增大衬底电阻阻值方法来降低MOS管衬底电阻噪声,从而减小整体LNA的噪声系数。将此方法应用于共栅级、电阻负反馈共源级与源简并电感型共源级等3种LNA中,采用台积电0.18μm互补金属氧化物半导体工艺设计,仿真结果表明,应用降噪技术后,共栅级、源简并电感型共源级和电阻负反馈型共源级LNA的NF最高降幅分别为0.99 dB、1 dB与1.18 dB。所提方法能够有效降低LNA的NF,并且提高3种LNA的线性度。  相似文献   

14.
利用ADS完成了900MHz低噪声放大器的设计。该文重点分析了偏置电路的设计和稳定性的分析。另外对微带线的高频寄生效应等进行了分析,并针对这些因素利用ADS进行了电磁场仿真计算,最后给出了放大器的仿真结果和最终电路及测试结果。采用ATF35143器件设计,达到了预定的技术指标。  相似文献   

15.
提出了一种在微波宽带低噪声放大器设计中,放大器增益性能与噪声性能之间关系的解析表达式,对其解析解进行了详尽的讨论,大大简化了传统的设计过程,并对微波低噪声HEMT器件JS8905-AS的性能进行了分析设计,经验证,与传统方法的结果相吻合。  相似文献   

16.
设计了一种基于共源结构的两级级联超宽带低噪声放大器.该低噪声放大器采用了源端电感和四分之一阻抗变换器,在不恶化电路噪声系数的情况下具有较好的输入匹配.通过使用GaAs赝调制掺杂异质结场效应晶体管( pHEMT)器件,在PCB板上实现了低噪声放大器的加工,加工测试结果与原理图仿真结果基本符合.测试结果表明,该低噪声放大器的增益达到12±1.5 dB,最小噪声系数为1.8 dB,输入输出匹配结果良好.  相似文献   

17.
0.6μm CMOS工艺折叠共源共栅运算放大器设计   总被引:1,自引:0,他引:1  
折叠共源共栅结构改进了传统的两级运算放大器的输入范围和电源电压抑制特性,优化了二阶性能指标。利用mosis 0.6μm CMOS工艺模型参数,设计了折叠共源共栅结构的运算放大器,对各性能参数的仿真结果表明:该电路的开环增益为80 dB,单位增益带宽为20 MHz,相位裕度73°,功耗仅为3 mW。  相似文献   

18.
利用Advanced Design System(ADS)完成了L波段低噪声放大器(LNA)的设计。分析了实际电路可能产生的非连续性、寄生参数效应等因素对电路各个性能指标的影响,并针对这些因素利用ADS进行了电磁仿真计算,最后给出了放大器的仿真结果和最终电路及测试结果。采用ATF-35143器件设计,达到了预定的技术指标,工作频率1.21GHz,增益G大于14dB,噪声系数NF小于0.5 dB,输入1dB压缩点大于5dbm。  相似文献   

19.
基于100 nm的氮化镓(Gallium Nitride, GaN)高电子迁移率晶体管(High Electron Mobility Transistor, HEMT)工艺设计了一款毫米波低噪声放大器(Low Noise Amplifier, LNA)单片式微波集成电路(Monolithic Microwave Integrated Circuit, MMIC)芯片。该款低噪声放大器采用三级级联的拓扑结构,对带宽、噪声和增益进行了联合优化设计。测试结果显示,工作频率范围覆盖24~30 GHz,可兼顾5G毫米波n257(26.5~29.5 GHz)和n258(24.25~27.5 GHz)频段,噪声系数可达到2.4~2.5 d B的水平,小信号增益在21.1~24.1 d B之间,输出1 d B功率压缩点大于14.4 d Bm的水平。  相似文献   

20.
设计了一个应用于超宽带(UWB)系统的3~5 GHz超宽带低噪声放大器.电路由二阶切比雪夫滤波器,电阻并联反馈,两级共源共栅结构,源级跟随器组成.低噪声放大器采用0.18 mCMOS工艺进行设计,利用ADS 2006 A进行仿真.结果表明,低噪声放大器在3~5 GHz带宽范围内噪声系数(NF)小于2dB,功率增益在23.9~24.8 dB之间,输入端口反射系数小于-10dB,输出端口反射系数小于-15dB,IIP3为-11dBm在1.8 V的电源电压下,核心电路功耗为10 mW.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号