首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The biological properties of influenza virus strain A/PR/8/34, virulent from mice, and its variant 25A-1, obtained by hybridization with avirulent strain A/Leningrad. This reassortant 25A-1 included 7 genes of its virulent parent strain and only gene NS of the avirulent one, which contained a single mutation in position 798 (ATG=>ATA), inducing amino acid change MET=>IIe in position 100 of the polypeptide chain of protein NS2. The loss of pathogenic properties by strain A/PR/8/34 was achieved by replacing the single gene NS with an analogous mutant gene of the variant strain A/Leningrad, adapted to low temperatures. The single-gene reassortant 25A-1 thus obtained possessed, besides decreased capacity for multiplication in the lungs of mice, ts phenotype on MDCK cells, but exhibited no thermal sensitivity in cell systems of avian origin. The above-mentioned phenotypic changes in reassortant 25A-1 were due to disturbances in virus-specific protein synthesis at early and late stages, as detected in vivo and in vitro.  相似文献   

2.
We have previously described a strategy for the recovery of a synthetic influenza A virus wild-type (wt) PB2 gene (derived from influenza A/Ann Arbor/6/60 [AA] virus) into an infectious virus. It was possible to introduce an attenuating temperature-sensitive (ts) mutation at amino acid residue 265 of the AA wt PB2 gene and to rescue this mutant gene into infectious virus. Application of this new technology to influenza A virus vaccine development requires that multiple attenuating mutations be introduced to achieve a satisfactorily attenuated virus that retains the attenuation (att) phenotype following replication in vivo. In this report, we demonstrate that putative ts mutations at amino acids 112, 556, and 658 each indeed specify the ts and att phenotypes. Each of these mutations was introduced into a cDNA copy of the AA mutant mt265 PB2 gene to produce three double-mutant PB2 genes, each of which was rescued into an infectious virus. In general, the double-mutant PB2 transfectant viruses were more ts and attenuated in the lower respiratory tracts of hamsters than the single-mutant transfectant viruses, and the ts phenotype of two of three double-mutant PB2 transfectant viruses was stable even after prolonged replication in the upper respiratory tracts of immunocompromised mice. Two triple-mutant PB2 transfectant viruses with three predicted amino acid substitutions resulting from five nucleotide substitutions in the cDNA were then generated. The triple-mutant PB2 transfectant viruses were more ts and more attenuated than the double-mutant PB2 transfectant viruses. These results indicate that sequential introduction of additional ts mutations into the PB2 gene can yield mutants that exhibit a stepwise increase in temperature sensitivity and attenuation compared with the preceding mutant(s) in the series. Furthermore, the level of temperature sensitivity of the transfectant viruses correlated significantly with the level of attenuation of these viruses in hamsters. Although the triple-mutant PB2 transfectant viruses were attenuated in hamsters, intranasal administration of these viruses elicited a vigorous serum hemagglutination-inhibiting antibody response, and this was associated with resistance of the lower respiratory tract to subsequent wt virus challenge. These observations suggest the feasibility of using PB2 reverse genetics to generate a live influenza A virus vaccine donor strain that contains three attenuating mutations in one gene. It is predicted that reassortant viruses derived from such a donor virus would have the properties of attenuation, genetic stability, immunogenicity, and protective efficacy against challenge with wt virus.  相似文献   

3.
Phenotypical properties of single-gene reassortants of attenuated cold-adapted strain A/Leningrad/135/47/57 (H2N2) and strain A/PR8/34 virulent for laboratory animals were studied. Only the group of reassortants inheriting NS gene from cold-adapted virus was fully attenuated for various animals species, similarly as reassortants with 6/2 genomic formula containing all the 6 internal protein genes from strain A/Leningrad/134/47/57. Reassortant 25A-1 single-gene for NS was temperature-sensitive (ts) on mammalian cells but formed plaques at 40 degrees C on chicken kidney cells. Reassortants with genomic formula 6/2 were temperature-sensitive in all types of cells used. Reassortant 25A-1 could synthesize normal amounts of polypeptides in MDCK cells at 39 degrees C, whereas protein synthesis of reassortants with 6/2 genomic formula was noticeably reduced at this temperature. Hence, a similar level of attenuation of both reassortant groups appears to be due to various molecular mechanisms. Possible role of NS2 gene mutation in attenuation of strain A/Leningrad/134/47/57 and its reassortants is discussed.  相似文献   

4.
The C terminus of the influenza virus hemagglutinin (HA) contains three cysteine residues that are highly conserved among HA subtypes, two in the cytoplasmic tail and one in the transmembrane domain. All of these C-terminal cysteine residues are modified by the covalent addition of palmitic acid through a thio-ether linkage. To investigate the role of HA palmitylation in virus assembly, we used reverse genetics technique to introduce substitutions and deletions that affected the three conserved cysteine residues into the H3 subtype HA. The rescued viruses contained the HA of subtype H3 (A/Udorn/72) in a subtype H1 helper virus (A/WSN/33) background. Rescued viruses which do not contain a site for palmitylation (by residue substitution or substitution combined with deletion of the cytoplasmic tail) were obtained. Rescued virions had a normal polypeptide composition. Analysis of the kinetics of HA low-pH-induced fusion of the mutants showed no major change from that of virus with wild-type (wt) HA. The PFU/HA ratio of the rescued viruses grown in eggs ranged from that of virus with wt HA to 16-fold lower levels, whereas the PFU/HA ratio of the rescued viruses grown in MDCK cells varied only 2-fold from that of virus with wt HA. However, except for one rescued mutant virus (CAC), the mutant viruses were attenuated in mice, as indicated by a > or = 400-fold increase in the 50% lethal dose. Interestingly, except for one mutant virus (CAC), all of the rescued mutant viruses were restricted for replication in the upper respiratory tract but much less restricted in the lungs. Thus, the HA cytoplasmic tail may play a very important role in the generation of virus that can replicate in multiple cell types.  相似文献   

5.
A neuraminidase (NA)-deficient mutant, designated NWS-Mvi, of the reassortant influenza virus A/NWS/33HA-A/tern/Australia/G70c/75NA (H1N9), was selected by passaging virus in MDCK cells in a medium containing neuraminidase from the bacterium Micromonospora viridifaciens and polyclonal antiserum against the influenza NA. Growth of the resulting mutant virus is dependent on the addition of neuraminidase to the medium. Western blot analysis showed that the neuraminidase protein was absent from the mutant virus particles, and Northern hybridization showed that RNA segment 6, which contains the coding information for the NA, had undergone massive deletion. Viral protein synthesis in cells infected with the mutant virus was not dependent on the addition of neuraminidase. In the absence of a functional NA, the NWS-Mvi mutant virus can infect MDCK cells with normal cytopathic effects. This neuraminidase-minus influenza virus serves as an excellent source of parent virus for reverse genetics experiments involving genes that encode a functional neuraminidase.  相似文献   

6.
The significance of the conserved cytoplasmic tail sequence of influenza A virus neuraminidase (NA) was analyzed by the recently developed reverse genetics technique (W. Luytjes, M. Krystal, M. Enami, J. D. Parvin, and P. Palese, Cell 59:1107-1113, 1989). A chimeric influenza virus A/WSN/33 NA containing the influenza B virus cytoplasmic tail rescued influenza A virus infectivity. The transfectant virus had less NA incorporated into virions than A/WSN/33, indicating that the cytoplasmic tail of influenza virus NA plays a role in incorporation of NA into virions. However, these results also suggest that the influenza A virus and influenza B virus cytoplasmic tail sequences share common features that lead to the production of infectious virus. Transfectant virus was obtained with all cytoplasmic tail mutants generated by site-directed mutagenesis of the influenza A virus tail, except for the mutant resulting from substitution of the conserved proline residue, presumably because of its contribution to the secondary structure of the tail. No virus was rescued when the cytoplasmic tail was deleted, indicating that the cytoplasmic tail is essential for production of the virus. The virulence of the transfectant viruses in mice was directly proportional to the amount of NA incorporated. The importance of the NA cytoplasmic tail in virus assembly and virulence has implications for use in developing antiviral strategies.  相似文献   

7.
8.
(-)Epigallocatechin gallate (EGCg) and theaflavin digallate (TF3) (1-10 microM) inhibited the infectivity of both influenza A virus and influenza B virus in Madin-Darby canine kidney (MDCK) cells in vitro. Study by electron microscope revealed that EGCg and TF3 (1 mM) agglutinated influenza viruses as well as did antibody, and that they prevented the viruses from adsorbing to MDCK cells. EGCg and TF3 more weakly inhibited adsorption of the viruses to MDCK cells. EGCg and TF3 (1-16 microM) also inhibited haemagglutination by influenza viruses. These findings suggest that tea polyphenols bind to the haemagglutinin of influenza virus, inhibit its adsorption to MDCK cells, and thus block its infectivity.  相似文献   

9.
African swine fever virus (ASFV) replicates in the cytoplasm of infected cells and contains genes encoding a number of enzymes needed for DNA synthesis, including a thymidine kinase (TK) gene. Recombinant TK gene deletion viruses were produced by using two highly pathogenic isolates of ASFV through homologous recombination with an ASFV p72 promoter-beta-glucuronidase indicator cassette (p72GUS) flanked by ASFV sequences targeting the TK region. Attempts to isolate double-crossover TK gene deletion mutants on swine macrophages failed, suggesting a growth deficiency of TK- ASFV on macrophages. Two pathogenic ASFV isolates, ASFV Malawi and ASFV Haiti, partially adapted to Vero cells, were used successfully to construct TK deletion viruses on Vero cells. The selected viruses grew well on Vero cells, but both mutants exhibited a growth defect on swine macrophages at low multiplicities of infection (MOI), yielding 0.1 to 1.0% of wild-type levels. At high MOI, the macrophage growth defect was not apparent. The Malawi TK deletion mutant showed reduced virulence for swine, producing transient fevers, lower viremia titers, and reduced mortality. In contrast, 100% mortality was observed for swine inoculated with the TK+ revertant virus. Swine surviving TK- ASFV infection remained free of clinical signs of African swine fever following subsequent challenge with the parental pathogenic ASFV. The data indicate that the TK gene of ASFV is important for growth in swine macrophages in vitro and is a virus virulence factor in swine.  相似文献   

10.
Matrix (M) and nonstructural (NS) genes of thirteen equine H3N8 and H7N7 influenza viruses were sequenced and analyzed from an evolutionary point of view. The M and NS genes of H3N8 viruses isolated between 1989 and 1993 evolved into two minor branch clusters, including isolates from Europe and the American continent, respectively. It was noteworthy to reveal that the nucleotide sequences of the M and NS genes of an earlier American strain showed highest homology to those of recent European viruses. "Frozen evolution" was observed in the M and NS genes of A/eq/LaPlata/1/88. It was also evident that the NS gene of an H7N7 virus from 1977 was very similar to that of a 1979-H3N8 virus, while the M gene was closest phylogenetically to that of the earliest H7N7 virus isolated in 1956. Furthermore, the M2 protein of A/eq/Newmarket/1/77 virus contained a carboxyl terminal deletion of three amino acids. The evolutionary rates of the M and NS genes of H3N8 equine influenza viruses were estimated to be 5.4 x 10(-4) and 5.1 x 10(-4) substitutions per site per year, respectively, which were slower than those of human viruses.  相似文献   

11.
Entry of influenza virus into the host cell is dependent on the fusion of the viral envelope with the endosomal membrane and is mediated by a low-pH-induced change of the viral hemagglutinin (HA) to a conformation that is fusogenic. A compound related to podocarpic acid (180299) was identified that inhibits multicycle replication of influenza A/Kawasaki/86 (H1N1) virus in culture. Treatment of Madin-Darby canine kidney (MDCK) cells with 180299 at 1 h before infection resulted in the inhibition of viral protein synthesis. Addition of 20 microgram of 180299/ml at 1 h p.i. had no effect, indicating that 180299 affects an early step of the influenza viral replication cycle. Genetic analysis of reassortants between sensitive and resistant viruses demonstrated that hemagglutinin (HA) conferred the 180299-resistant (180299(r)) phenotype. Twelve independent isolates of influenza A/Kawasaki/86 were selected for resistance to 180299, and sequence analysis revealed that each of these viruses contained amino acid substitutions in the HA. These mutations are dispersed throughout the HA primary amino acid sequence and cluster in one of two regions: the interface between HA1 and HA2 and in a region near the fusion domain of HA2. When compared with the parent virus, the pH-of-inactivation of the resistant mutants was increased by 0.3 to 0.6 pH unit, suggesting that the mutant HAs undergo the conformational change at an elevated pH. Fusion of human erythrocytes to MDCK cells infected with parent influenza A/Kawasaki/86 was inhibited by 180299 (0.1-10 microgram/ml) in a concentration-dependent manner, whereas fusion of erythrocytes to MDCK cells infected with 180299(r) mutants was not affected. These results suggest that 180299 interacts with the neutral pH conformation of influenza A HA and prevents the low-pH-induced change of HA to its fusogenic conformation.  相似文献   

12.
Complete double-stranded DNA copies of the RNA genes of the human influenza virus A/PR/8/34 have been synthesized by using two synthetic oligodeoxynucleotide primers. The gene encoding the non-structural proteins NS1 and NS2, prepared with these primers, has been cloned into the bacteriophage M13mp7 and sequenced. The sequence is compared with that from another human strain and from an avian strain.  相似文献   

13.
14.
The sialidase inhibitor 4-guanidino-2,4-dideoxy-2,3-dehydro-N-acetylneuraminic acid (4-guanidino-Neu5Ac2en), designed with computer assistance and knowledge of the crystal structure of influenza virus neuraminidase, has shown antiviral effects in animal models of human influenza (M. von Itzstein et al., Nature, 363, 418-423, 1993). Here we demonstrate that the compound efficiently inhibits the enzyme activity of all nine subtypes of avian influenza A neuraminidase in vitro. When administered intranasally to chickens infected with lethal viruses, high doses of the compound (1000 micrograms/kg) protected 85% of birds harboring A/Chick/Victoria/1/85 (H7N7), a fowl plague virus, but not chickens infected with other highly virulent viruses of the N1, N2, or N3 subtype. This differential inhibitory effect was also seen in a plaque reduction assay with Madin-Darby canine kidney cells (MDCK), where 4-guanidino-Neu5Ac2en was more effective against A/Chick/Vic/85 (H7N7) than A/FPV/Rostock/34 (H7N1). In contrast to the substantial plaque reduction observed in MDCK cells, the drug failed to inhibit plaque formation in chicken embryo fibroblasts infected with either A/Chick/Vic/85 or A/FPV/Rostock/34, regardless of its concentration. The different levels of drug efficacy seen in two cell systems most likely reflect the location of virus budding and release in polarized versus nonpolarized cells, as well as the compound's mode of extracellular action.  相似文献   

15.
A collection of C-terminal deletion mutants of the influenza A virus NS1 gene has been used to define the regions of the NS1 protein involved in its functionality. Immunofluorescence analyses showed that the NS1 protein sequences downstream from position 81 are not required for nuclear transport. The capacity of these mutants to bind RNA was studied by in vitro binding tests using a model vRNA probe. These experiments showed that the N-terminal 81 amino acids of NS1 protein are sufficient for RNA binding activity. The collection of mutants also served to map the NS1 sequences required for nuclear retention of mRNA and for stimulation of viral mRNA translation, using the NP gene as reporter. The results obtained indicated that the N-terminal 113 amino acids of NS1 protein are sufficient for nuclear retention of mRNA and stimulation of viral mRNA translation. The possibility that this region of the protein may be sufficient for virus viability is discussed in relation to the sequences of NS1 genes of field isolates and to the phenotype of known viral mutants affected in the NS1 gene.  相似文献   

16.
Multi-cycle replication and plaque formation of influenza A and B viruses and cleavage activation of their hemagglutinin (HA) by an endogenous protease(s) were examined in two MDCK cell lines, MDCK(-) and MDCK(+). No exogenous trypsin was required for multi-cycle replication and plaque formation of all the influenza A viruses tested in the MDCK(+) cell, while those of the viruses in the MDCK(-) cell were completely trypsin-dependent. In both cell lines, on the other hand, influenza B viruses grew well in the absence of trypsin. The capability of multiple replication and plaque formation of the influenza viruses correlated with cleavage of the HA precursor (HA0) to HA1 and HA2, indicating that both cell lines express an HA activating endoprotease(s); that of the MDCK(+) cell activates the HA of influenza A and B viruses, and that of the MDCK(-) cell does only the HA of influenza B virus. Furthermore, the protease of the MDCK(+) cell was strongly suggested to be present on the cell surface and a serine protease. The MDCK(+) cell would be useful for isolation of influenza viruses from clinical specimens and for screening of protease inhibitors for anti-influenza virus drugs.  相似文献   

17.
The behavior in mice of two thermosensitive (ts) mutants (denoted ts217 and ts700) of the recombinant influenza virus S/N (H2N1) was studied. The parental thermoresistant (tr) virus and both of the mutants were capable of inducing protection against pneumotropic A/Singapore (H2N2) and A/WS (H0N1) challenge viruses. Immunity against the Singapore virus, with which the S/N virus shared the hemagglutinin, developed earlier than against the WS virus, with which the S/N virus shared the neuraminidase. The tr and ts217 viruses were immunologically more active than the ts700 virus. The first two viruses grew markedly better in mouse lungs than did the latter. In the course of ts217 virus replication in vivo, revertants capable of growing at 39 degrees C appeared readily. On the other hand, the ts700 virus proved to be genetically stable. These data seem to provide evidence of a linkage between the stability of the ts phenotype, reproductive capacity in mouse lungs, and immunogenicity in the viruses examined.  相似文献   

18.
Seven complementation-recombination groups of temperature-sensitive (ts) influenza WSN virus mutants have been previously isolated. Recently two of these groups (IV and VI) were shown to possess defects in the neuraminidase and the hemagglutinin gene, respectively, and two groups (I and III) were reported to have defects in the P3 and P1 proteins which are required for complementary RNA synthesis. In this communication we report on the defects in the remaining three mutant groups. Wild-type (ts+) recombinants derived from ts mutants and different non-ts influenza viruses were analyzed on RNA polyacrylamide gels. This technique permitted the identification of the P2 protein, the nucleoprotein, and the M protein as the defective gene products in mutant groups II, V, and VII, respectively. Based on the physiological behavior of mutants in groups II and V, it appears that P2 protein and nucleoprotein are required for virion RNA synthesis during influenza virus replication.  相似文献   

19.
The second gene in the 3'-to-5' gene order in respiratory syncytial virus (RSV) encodes the nonstructural protein NS2, for which there is no assigned function. To study the function of NS2, we have used a recently developed reverse genetics system to ablate expression of NS2 in recombinant RSV. A full-length cDNA copy of the antigenome of RSV A2 strain under the control of a T7 promoter was modified by introduction of tandem termination codons within the NS2 open reading frame (NS2stop) or by deletion of the entire NS2 gene (DeltaNS2). The NS2 knockout antigenomic cDNAs were cotransfected with plasmids encoding the N, P, L, and M2-1 proteins of RSV, each controlled by the T7 promoter, into cells infected with a vaccinia virus recombinant expressing T7 RNA polymerase. Recombinant NS2stop and DeltaNS2 RSVs were recovered and characterized. Both types of NS2 knockout virus displayed pinpoint plaque morphology and grew more slowly than wild-type RSV. The expression of monocistronic mRNAs for the five genes examined (NS1, NS2, N, F, and L) was unchanged in cells infected with either type of NS2 knockout virus, except that no NS2 mRNA was detected with the DeltaNS2 virus. Synthesis of readthrough mRNAs was affected only for the DeltaNS2 virus, where the NS1-NS2, NS2-N, and NS1-NS2-N mRNAs were replaced with the predicted novel NS1-N mRNA. Upon passage, the NS2stop virus stock rapidly developed revertants which expressed NS2 protein and grew with similar plaque morphology and kinetics wild-type RSV. Sequence analysis confirmed that the termination codons had reverted to sense, albeit not the wild-type assignments, and provided evidence consistent with biased hypermutation. No revertants were recovered from recombinant DeltaNS2 RSV. These results show that the NS2 protein is not essential for RSV replication, although its presence greatly improves virus growth in cell culture. The attenuated phenotype of these mutant viruses, coupled with the expected genetic stability associated with gene deletions, suggests that the DeltaNS2 RSV is a candidate for vaccine development.  相似文献   

20.
Genetic alterations in gamma-ray- and alpha-particle-induced HPRT mutants were examined by multiplex polymerase chain reaction (PCR) analysis. A total of 39-63% of gamma-ray-induced and 31-57% of alpha-particle-induced mutants had partial or total deletions of the HPRT gene. The proportion of these deletion events was dependent on radiation dose, and at the resolution limits employed there were no significant differences between the spectra induced by equitoxic doses of alpha particles (0.2-0.4 Gy) and gamma rays (3 Gy). The molecular nature of the deletions was analyzed by the use of sequence tagged site (STS) primers and PCR amplification as a "probe" for specific regions of the human X chromosome within the Xq26 region. These STSs were closely linked and spanned regions approximately 1.7 Mbp from the telomeric side and 1.7 Mbp from the centromeric side of the HPRT gene. These markers include: DXS53, 299R, DXS79, yH3L, 3/19, PR1, PR25, H2, yH3R, 1/44, 1/67, 1/1, DXS86, D8C6, DXS10 and DXS144. STS analyses indicated that the maximum size of total deletions in radiation-induced HPRT mutants can be greater than 2.7 Mbp and deletion size appears to be dependent on radiation dose. There were no apparent differences in the sizes of the deletions induced by alpha particles or gamma rays. On the other hand, deletions containing portions of the HPRT gene were observed to be 800 kbp or less, and the pattern of the partial deletion induced by alpha particles appeared to be different from that induced by gamma rays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号