首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An efficient optimization strategy for the design of diffractive optical elements that is based on rigorous diffraction theory is described. The optimization algorithm combines diffraction models of different degrees of accuracy and computational complexity. A fast design algorithm for diffractive optical elements is used to yield estimates of the optimum surface profile based on paraxial diffraction theory. These estimates are subsequently evaluated with a rigorous diffraction model. This scheme allows one to minimize the need to compute diffraction effects rigorously, while providing accurate design. We discuss potential applications of this scheme as well as details of an implementation based on a modified Gerchberg-Saxton algorithm and the finite-difference time-domain method. Illustrative examples are provided in which we use the algorithm to design Fourier array illuminators.  相似文献   

2.
提出了一种基于遗传算法的衍射光学元件优化设计方法;在衍射光学元件设计中遗传算法运行参数对遗传算法性能有一定的影响:采用较大的群体规模,遗传算法越容易获得最优解;交叉算子越大,遗传算法全局搜索能力越强;选择算子对遗传算法的影响不是太大;如果要进一步提高解的精度,可选取较大的终止代数。数值计算结果表明,用遗传算法优化设计的衍射光学元件,其误差小于 5.2%,衍射效率达到 91.2%。遗传算法很适合衍射光学元件的优化设计。  相似文献   

3.
There is a trade-off between uniformity and diffraction efficiency in the design of diffractive optical elements. It is caused by the inherent ill-posedness of the design problem itself. For the optimal design, the optimum trade-off needs to be obtained. The trade-off between uniformity and diffraction efficiency in the design of diffractive optical elements is theoretically investigated based on the Tikhonov regularization theory. A novel scheme of an iterative Fourier transform algorithm with regularization to obtain the optimum trade-off is proposed.  相似文献   

4.
The design of an alignment-detection system that uses off-axis diffractive elements and photodetectors is presented. The system was developed to detect the real-time misalignment of an array of optical beams as they pass through a microchannel relay. The design of this scheme is presented along with experimental results obtained from a prototype detection system.  相似文献   

5.
Zhou G  Chen Y  Wang Z  Song H 《Applied optics》1999,38(20):4281-4290
We propose a genetic local search algorithm (GLSA) for the optimization design of diffractive optical elements (DOE's). This hybrid algorithm incorporates advantages of both genetic algorithm (GA) and local search techniques. It appears better able to locate the global minimum compared with a canonical GA. Sample cases investigated here include the optimization design of binary-phase Dammann gratings, continuous surface-relief grating array generators, and a uniform top-hat focal plane intensity profile generator. Two GLSA's whose incorporated local search techniques are the hill-climbing method and the simulated annealing algorithm are investigated. Numerical experimental results demonstrate that the proposed algorithm is highly efficient and robust. DOE's that have high diffraction efficiency and excellent uniformity can be achieved by use of the algorithm we propose.  相似文献   

6.
Fan J  Zaleta D  Urquhart KS  Lee SH 《Applied optics》1995,34(14):2522-2533
One of the general requirements of a computer-aided design system is the existence of efficient (in data size and running time) algorithms that are generally reliable for the broadest range of design instances. The restricted data formats of the electron-beam machines impose difficulties in developing algorithms for the design of diffractive optical elements (DOE's) and computer-generated holograms (CGH's). Issues that are related to the development of CGH algorithms for e-beam fabrication of DOE's and CGH's are discussed. We define the problems the CGH algorithms need to solve, then introduce general curve drawing algorithms for the e-beam data generation of diffractive optical components. An efficient algorithm for general aspherical DOE's is proposed. Actual design and fabrication examples are also presented.  相似文献   

7.
Synthetic spectra: a tool for correlation spectroscopy   总被引:2,自引:0,他引:2  
We show that computer-generated diffractive optical elements can be used to synthesize the infrared spectra of important compounds, and we describe a modified phase-retrieval algorithm useful for the design of elements of this type. In particular, we present the results of calculations of diffractive elements that are capable of synthesizing portions of the infrared spectra of gaseous hydrogen fluoride (HF) and trichloroethylene (TCE). Further, we propose a new type of correlation spectrometer that uses these diffractive elements rather than reference cells for the production of reference spectra. Storage of a large number of diffractive elements, each producing a synthetic spectrum corresponding to a different target compound, in compact-disk-like format will allow a spectrometer of this type to rapidly determine the composition of unknown samples. Other advantages of the proposed correlation spectrometer are also discussed.  相似文献   

8.
We propose a rigorous electromagnetic design of two-dimensional and finite-aperture diffractive optical elements (DOEs) that employs an effective iterative optimization algorithm in conjunction with a rigorous electromagnetic computational model: the finite-difference time-domain method. The iterative optimization process, the finite-difference time-domain method, and the angular spectrum propagation method are discussed in detail. Without any approximation based on the scalar theory, the algorithm can produce rigorous design results, both numerical and graphical, with fast convergence, reasonable computational cost, and good design quality. Using our iterative algorithm, we designed a diffractive cylindrical lens and a 1-to-2-beam fanner for normal-incidence TE-mode illumination, thus showing that the optimization algorithm is valid and competent for rigorously designing diffractive optical elements. Concerning the problem of fabrication, we also evaluated the performance of the DOE when the DOE profile is discrete.  相似文献   

9.
Thomson MJ  Liu J  Taghizadeh MR 《Applied optics》2004,43(10):1996-1999
We present a design method based on the Gerchberg-Saxton algorithm for the design of high-performance diffractive optical elements. Results from this algorithm are compared with results from simulated annealing and the iterative Fourier-transform algorithm. The element performance is comparable with those designed by simulated annealing, whereas the design time is similar to the iterative Fourier-transform method. Finally, we present results for a demanding beam-shaping task that was beyond the capabilities of either of the traditional algorithms. The element performances demonstrate greater than 85% efficiency and less than 2% uniformity error.  相似文献   

10.
The design, fabrication, experimental characterization, and system-performance analysis of a diffractive optical implementation of an error-diffusion filter for use in digital image halftoning is reported. A diffractive optical filter was fabricated as an eight-level phase element that diffuses the quantization error nonuniformly in both the weighting and the spatial dimensions, according to a prescribed algorithm. Ten identical diffractive elements were fabricated on ten different wafers and subsequently characterized experimentally. A detailed error analysis including both fabrication and instrumentation errors was carried out to quantify the performance of the fabrication process as well as the expected system performance of the filters. Halftone system performance was evaluated by use of the experimental filter's performance and both quantitative and qualitative performance metrics. The results of this analysis demonstrate that multiple identical copies of a diffractive optical filter can be produced with sufficient accuracy that no loss in the halftoning system performance results.  相似文献   

11.
We propose an optoelectronic parallel-matching architecture (PMA) that provides powerful processing capabilities in global processing compared with conventional parallel-computing architectures. The PMA is composed of a global processor called a parallel-matching (PM) module and multiple processing elements (PE's). The PM module is implemented by a large-fan-out free-space optical interconnection and a PM smart-pixel array (PM-SPA). In the proposed architecture, by means of the PM module each PE can monitor the other PE's by use of several kinds of global data matching as well as interprocessor communication. Theoretical evaluation of the performance shows that the proposed PMA provides tremendous improvement in global processing. A prototype demonstrator of the PM module is constructed on the basis of state-of-the-art optoelectronic devices and a diffractive optical element. The prototype is assumed for use in a multiple-processor system composed of 4 x 4 PE's that are completely connected through bit-serial optical communication channels. The PM-SPA is emulated by a complex programmable device and a complementary metal-oxide semiconductor photodetector array. On the prototype demonstrator the fundamental operations of the PM module were verified at 15 MHz.  相似文献   

12.
Diffractive optical element design is an important problem for many applications and is usually achieved by the Gerchberg-Saxton or the Yang-Gu algorithm. These algorithms are formulated on the basis of monochromatic wave propagation and the far-field assumption, because the Fourier transform is used to model the wave propagation. We propose an iterative algorithm (based on rigorous coupled-wave analysis) for the design of a diffractive optical element. Since rigorous coupled-wave analysis (instead of Fourier transformation) is used to calculate the light-field distribution behind the optical element, the diffractive optical element can thus be better designed. Simulation results are provided to verify the proposed algorithm for designing a converging lens. Compared with the well-known Gerchberg-Saxton and Yang-Gu algorithms, our method provides 7.8% and 10.8%, respectively, improvement in converging the light amplitude when a microlens is desired. In addition, the proposed algorithm provides a solution that is very close to the solution obtained by the simulated annealing method (within 1.89% error).  相似文献   

13.
IntroductionWiththerapiddevelopmentofVLSItechniques,thecircuitfeaturesizeisbecomingsmalergradualyandthecurentphotolithographi...  相似文献   

14.
Rossi M  Hessler T 《Applied optics》1999,38(14):3068-3076
The use of diffractive beam-shaping elements in hybrid or monolithic microsystems is investigated. Compact optical systems require diffractive structures with small grating periods for creating large deflection angles. Such elements are difficult to fabricate while a low stray-light level is maintained. In addition, because of the small geometrical dimensions and the short propagation lengths in an optomechanical microsystem, any stray light generated by the diffractive structure critically affects the overall optical performance. A model for the estimation of the interference effects between the designed and the unwanted diffraction orders is developed and applied to an example of a collimating diffractive optical element. On the basis of theoretical and experimental results, design rules for the application of diffractive beam-shaping elements in microsystems are derived.  相似文献   

15.
Many real-world engineering design problems involve the simultaneous optimization of several conflicting objectives. In this paper, a method combining the struggle genetic crowding algorithm with Pareto-based population ranking is proposed to elicit trade-off frontiers. The new method has been tested on a variety of published problems, reliably locating both discontinuous Pareto frontiers as well as multiple Pareto frontiers in multi-modal search spaces. Other published multi-objective genetic algorithms are less robust in locating both global and local Pareto frontiers in a single optimization. For example, in a multi-modal test problem a previously published non-dominated sorting GA (NSGA) located the global Pareto frontier in 41% of the optimizations, while the proposed method located both global and local frontiers in all test runs. Additionally, the algorithm requires little problem specific tuning of parameters.  相似文献   

16.
Diffractive optical elements as raster-image generators   总被引:1,自引:0,他引:1  
Gruber M 《Applied optics》2001,40(32):5830-5839
The use of diffractive optical elements (DOEs) to generate complex raster images for a primarily artistic purpose is dealt with. Aspects of human vision that are relevant for the design of such elements are discussed. A design method based on an iterative Fourier transform algorithm and extended with elements from the direct-binary-search and the simulated-annealing algorithms is described. The proposed method provides a large set of parameters that can be adjusted freely to optimize it for any given design task. For demonstration a phase-only DOE was designed that generates an image of a Chinese dragon as a diffraction pattern. It was realized as a surface-relief element on a planar substrate through multilevel binary lithography and reactive-ion etching. Experimental tests confirm the usefulness of the design and the fabrication procedures to achieve excellent image quality.  相似文献   

17.
Chen CH  Sawchuk AA 《Applied optics》1997,36(29):7297-7306
A new, to our knowledge, design method for diffractive optical elements (DOE's) is described and compared with existing methods. The technique applies a nonlinear least-squares algorithm to design two-dimensional pure phase DOE's that reconstruct a desired diffraction pattern with high uniformity, efficiency, and signal-to-noise ratio. The technique also uses a phase-shifting quantization procedure that greatly reduces the quantization error for DOE's to a minimum level. In this paper, we compare simulated reconstruction results of DOE's designed by use of these methods with results obtained by the commonly used two-stage iterative Fourier transform design algorithm of Wyrowski. [J. Opt. Soc. Am. A 7, 961, (1990)].  相似文献   

18.
19.
Achromatic fourier processor with holographic optical lenses   总被引:1,自引:0,他引:1  
Domingo M  Arias I  García A 《Applied optics》2001,40(14):2267-2274
An optical Fourier processor that allows the use of broadband light sources and colored inputs is designed, fabricated, and tested. We develop a design technique based on phase manipulation in the Fourier plane to construct an image processor that provides a chromatically corrected image making use of the good aberrations behavior of symmetrical optical systems. Only a small number of diffractive lenses and one achromatic refractive lens are required to obtain a real image. We verify our design experimentally using holographic lenses, which are presented, owing to their versatility, as a good alternative to expensive blazed diffractive elements.  相似文献   

20.
In this article, we focus on the design of code division multiple access filters (used in data transmission) composed of a particular optical fiber called sampled fiber Bragg grating (SFBG). More precisely, we consider an inverse problem that consists in determining the effective refractive index profile of an SFBG that produces a given reflected spectrum. In order to solve this problem, we use an original multi-layers semi-deterministic global optimization method based on the search of suitable initial conditions for a given optimization algorithm. The results obtained with our optimization algorithms are compared, in term of complexity and final design, with those given by an hybrid genetic algorithm (the method generally considered in the literature for designing SFBGs).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号