首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of Hexacelsian Barium Aluminosilicate by a Solid-State Process   总被引:1,自引:0,他引:1  
Synthesis of hexacelsian barium aluminosilicate (BaAl2Si2O8 or BAS) from BaCO3, Al2O3, and amorphous SiO2 was examined. BaCO3 can react with SiO2 and Al2O3 to form barium silicates (Ba2SiO4 or B2S, BaSiO3 or BS, and BaSi2O5 or BS2) and barium aluminate (BaAl2O4 or BA). It is shown that there are two competitive reactions leading to the formation of hexacelsian BAS. One involves a reaction between BS2 and Al2O3 and the other involves a reaction between BA and SiO2. In experiments with the model BS2–Al2O3 and BA–SiO2 systems it is shown that the reaction between BS2 and Al2O3 is much faster than the reaction between BA and SiO2. However, in the BAS system, Al2O3 suppresses the reactions which form BS2 and instead reacts with B2S and BS to form BA. The kinetics of hexacelsian BAS formation are greatly enhanced when BS2 is made separately and fired with Al2O3 to yield BAS.  相似文献   

2.
BaAl2O4/aluminum-bearing composites have been synthesized via the low-temperature oxidation of Ba-Al precursors. Ba-Al powder mixtures that were prepared via high-energy vibratory milling were uniaxially pressed into bar-shaped specimens that were then exposed to a series of heat treatments in pure, flowing oxygen at temperatures up to 640°C. Oxidation at a temperature of 300°C resulted in the formation of barium peroxide (BaO2). Additional heat treatment at a temperature of 550°C resulted in the consumption of BaO2 and some aluminum to yield BaAl2O4 and Al4Ba. The oxidation of Al4Ba at a temperature of 640°C yielded additional BaAl2O4. Microstructural analyses revealed that a well-dispersed, co-continuous mixture of Al2O3-excess BaAl2O4 and 99.5% pure aluminum was produced.  相似文献   

3.
Simulataneous additions of SrO and Al2O3 to ZrO2 (12 mol% CeO2) lead to the in situ formation of strontium aluminate (SrO · 6Al2O3) platelets (∼0.5 μm in width and 5 to 10 μm in length) within the Ce-TZP matrix. These platelet-containing Ce-TZP ceramics have the strength (500 to 700 MPa) and hardness (13 to 14 GPa) of Ce-TZP/Al2O3 while maintaining the high toughness (14 to 15 MPa ± m1/2) of Ce-TZP. Optimum room-temperature properties are obtained at SrO/Al2O3 molar ratios between 0.025 and 0.1 for ZrO2 (12 mol% CeO2) with starting Al2O3 contents ranging between 15 and 60 vol%. The role of various toughening mechanisms is discussed for these composite ceramics.  相似文献   

4.
Metallic Ba-Al-Si bonding agents have been used to produce all-ceramic, BaO-Al2O3-SiO2 bonds between plates of mullite (Al6Si2O13). Ba-Al-Si tapes (200 (μm thick) were fabricated by compaction and rolling of mechanically alloyed powder. The Ba-Al-Si tapes were placed between mullite plates and then oxidized by heating to a peak temperature of 1230°C in air. The oxidized tapes strongly adhered to the mullite plates at 25° and 1000°C, as indicated by the fracture morphologies obtained from compressive shear tests. Electron microscopy (EPMA, TEM) revealed that the bulk of the oxidized Ba-Al-Si tapes (away from the interfaces with mullite) consisted largely of the compound BaAl2Si2O8, along with some BaSiO3 and an amorphous, barium-rich aluminosilicate. The interface between the oxidized bonding agent and bulk mullite consisted of a mixture of BaAl2Si2O8, Al6Si2O13, A12O3, BaAl2O4, and an amorphous, barium-bearing aluminosilicate.  相似文献   

5.
Processing and Characterization of BaTi4O9   总被引:1,自引:0,他引:1  
BaTi4O9 powder prepared by calcining BaCO3 and TiO2 powders was sintered to over 97% of theoretical density. Less than 5% Ba2Ti9O20 occurred as a second phase in "pure" BaTi4O9, and Al2O3 impurities from processing formed isolated hollandite (∼BaAl2Ti6O16) grains, which were identified by fringes in bright-field TEM images. For pure BaTi4O9 at 1 MHz, a dielectric loss (tan δ) of 5 × 10−4 and dielectric constant of 39 were recorded. Hollandite impurities were found to increase tan δ by 2 orders of magnitude, whereas firing in oxygen decreased tan δ by an order of magnitude.  相似文献   

6.
α-Al2O3 platelet powders were synthesized in molten Na2SO4 flux. The size of α-Al2O3 platelets was significantly reduced when partially decomposed rather than pure Al2(SO4)3 was used as the source of Al2O3; a further reduction in the platelet size was realized through additional seeding with nanosized α-Al2O3 seeds. The addition of microsized α-Al2O3 platelet seeds significantly influenced the platelet morphology of the final powder, as well. The platelet size of the final powder was in direct proportion to the size of the platelet seeds, and was in reverse proportion to the cube root of the platelet seed content.  相似文献   

7.
ZrO2–Al2O3 nanocomposite particles were synthesized by coating nano-ZrO2 particles on the surface of Al2O3 particles via the layer-by-layer (LBL) method. Polyacrylic acid (PAA) adsorption successfully modified the Al2O3 surface charge. Multilayer coating was successfully implemented, which was characterized by ξ potential, particle size. X-ray diffraction patterns showed that the content of ZrO2 in the final powders could be well controlled by the LBL method. The powders coated with three layers of nano-ZrO2 particles, which contained about 12 wt% ZrO2, were compacted by dry press and cold isostatically pressed methods. After sintering the compact at 1450°C for 2 h under atmosphere, a sintered body with a low pore microstructure was obtained. Scanning electron microscopy micrographs of the sintered body indicated that ZrO2 was well dispersed in the Al2O3 matrix.  相似文献   

8.
Microstructural characterization of a high-Al2O3 substrate containing cofired thick-film tungsten metallization, with particular emphasis on the metal/ceramic interface, was conducted. The substrate contained tabular Al2O3 grains surrounded by a continuous calcium magnesium aluminum silicate glass containing particles of monoclinic ZrO2 and reduced rutile (TiO2- x ). The metal/ceramic adhesion was caused by mechanical interlocking between the W and Al2O3 grains by the glass phase which penetrated the porous W layers during sintering; there was no interfacial reaction or diffusion zone. The mechanical properties of the W metallization did not limit interfacial strength. Heat treatments of the substrate at 1400 K in air and under vacuum resulted in the devitrification of the intergranular glass. The most abundant devitrification product was anorthite (CaAl2Si2O8), accompanied by magnesium aluminate titanate, magnesium aluminate spinel, α-cristobalite (SiO2), and α-cordierite (Mg2Al4Si5O18). In addition, small rutile particles precipitated within the Al2O3 grains.  相似文献   

9.
The formation process of barium hexaaluminate (BaO 6Al2O3) from BaCO3/γ-Al2O3 powders or hydrolyzed alkoxides was studied by analytical electron microscopy. Barium hexaaluminate is produced by a two-step solid-state reaction from BaCO3 and Al2O3 via formation of BaO·Al2O3. Marked grain growth and inclusion of nonequilibrium phase were inevitable in this powder mixture process. However, in an alkoxide-derived precursor, homogeneous mixing of components is attained and hence the formation of BaO·6Al2O3 proceeds readily. Powders obtained by this latter route consisted of fine planar particles with a uniform size and retained a large surface area (20.2 m2/g) even after heating at 1300°C. Electron diffraction results implied that suppression of crystal growth along the c axis is the reason for the large surface area of BaO·6Al2O3.  相似文献   

10.
Al2O3-TiC, Al2O3-TiC0.5N0.5, Al2O3-WC, Al2O3-SiC, and Al2O3-HfB2 powders were synthesized by the aluminothermic reduction of oxides in the presence of carbon or boron. The reacted powders were milled to reduce the size of agglomerates and subsequently densified without applied pressure to near-theoretical density. Microstructures and mechanical properties of composites made from exothermically reacted powders were compared with similar ceramics made from commercially available powders. In situ sintering was possible in the Al2O3-TiC system using a closed graphite crucible to contain reaction gases. The synthesis of β -SiC at temperatures above 1400°C via the direct reaction of the elements (SHS) was compared with SiC made by the magnesiothermic reduction of SiO2 in the presence of C after removing the MgO by leaching.  相似文献   

11.
We investigated the effect of characteristics of raw Al2O3 powder on the synthesis of AlN by the carbothermal reduction-nitridation method, in which CaF2 was added as a catalytic material. Four types of Al2O3 powders were selected. An Al2O3/C molar ratio of 0.29 was fixed, and the amount of CaF2 was varied from 3 to 30 wt%. The carbothermal reduction-nitridation was conducted from 1350° to 1450°C in N2 flow. The nitridation rate tended to increase with decreasing particle size of raw Al2O3 and was found to depend on the Al2O3 synthesizing method. The particle sizes of the synthesized AlN increased somewhat with increasing reaction temperatures. However, even though different particle sizes of Al2O3 powders were used, AlN powders synthesized under the same conditions exhibited almost the same particle size, round shape, and narrow size distribution. From XRD analysis, CaO·6Al2O3 and CaO·2Al2O3 were identified as intermediate compounds during these reactions. The above phenomena suggest that the synthesis mechanism of AlN powder by carbothermal reduction-nitridation of Al2O3 with CaF2 addition was the nitridation of the intermediate compounds through the liquid phase of the system CaF2-CaO·6Al2O3-CaO·2Al2O3.  相似文献   

12.
Novel microcomposite powders, consisting of inert cores (αAL-Al2O3) surrounded by reactive cement-based coatings (CaAl2O4), were synthesized by a modified Pechini process. The evolution of the crystalline CaAl2O4 phase during calcination was studied using multiple analytical techniques, including DRIFTS,13C and 27AlMAS FT-NMR, and XRD, for both pure CaAl2O4 and CaAl2O4-coated Al2O3 precursor powders. In both powders, decomposition proceeded via hydrocarbon chain scission and removal of ester groups at low temperatures ( T < 450°C), followed by the formation of inorganic carbonates at higher temperatures ( T > 450°C). These decomposition processes were accelerated by the underlying Al2O3 cores. Transmission electron microscopy (TEM) of the fully calcined powders showed that the inert αAL-Al2O3 particles were surrounded by relatively uniform CaAl2O4 coatings ranging in thickness from approximately 10 to 100 nm.  相似文献   

13.
The spinel (Mg,Si)Al2O4 was synthesized from aluminum dross using an induction synthesis method. X-ray diffraction analyses on products formed at different temperatures provided an understanding of the formation mechanism of the spinel. After removal of soluble components, the induction heating of the dross resulted first in the oxidation of some of the AlN component and the subsequent formation of the spinel by the following reaction: x SiO2+ (1− x )MgO + [1−( x /3)]Al2O3+ (2 x /3)AlN = (Mg1− x ,Si x )Al2O4+ ( x /3)N2( g ).  相似文献   

14.
The optical spectra of zinc aluminate (ZnAl2O4), zinc gallate (ZnGa2O4), and zinc aluminogallate (ZnAlGaO4) spinel powders were studied at wavelengths in the range of 250-900 nm using reflectance spectroscopy. The ZnAl2O4 and ZnGa2O4 powders were synthesized by using conventional ceramic processing techniques and had systematic variations in the molar ratio of ZnO to M2O3 (M = Al or Ga). The cubic spinel crystal structure of each composition was confirmed via powder X-ray diffractometry. The ZnAl2O4 powders showed optical properties in the ultraviolet wavelength region and had combined characteristics that were similar to that of ZnO (wurtzite structure) and Al2O3 (corundum structure), which result from the similar local environments of the zinc and aluminum cations within the cubic spinel crystal structure. A mechanically induced optical absorption (optomechanical effect) in the ultraviolet wavelength region was also observed in ZnAl2O4. The ZnGa2O4 powder followed a similar behavior, with the exception that the optomechanical effect did not occur in the gallate. The ZnAlGaO4 showed optical spectra that were intermediate to that of the endpoint compositions.  相似文献   

15.
Lead-oxide-bearing glasses are incompatible with aluminum nitride metallizations, and federal legislation is recommending their replacement in thick-film electronics and labeling. To evaluate alternatives, the benchmark chemical durabilities of the lead borosilicate and lead aluminate thick-film binder glasses have been determined. Aluminum oxide (Al2O3) benefits water durability moderately, acid durability substantially, and basic durability indistinguishably. The rate of attack in water is approximately two orders of magnitude greater than for soda–lime glass. The thermal contractions of the glasses are compatible. An apparent, spontaneous phase separation in the Al2O3-free glass is suppressed by Al2O3 that is included as a batch component.  相似文献   

16.
A polycrystalline LaAlO3 target for the radio-frequency (rf) magnetron sputterings of LaAlO3 thin films has been prepared. These films serve as a buffer layer for high- T c YBa2Cu3O7– x superconducting thin films on Si. Synthesis of lanthanum aluminate powder from a mixture of La2O3 and Al2O3 powders was performed by calcining from 1000° to 1600°C in air. Characterization of the calcined powders by X-ray diffraction indicates that full development of LaAlO3 phase was evident in the sample calcined for 3 h at 1600°C in air. A polycrystalline LaAlO3 target was prepared by heat treatment at 1500°C for 2 h in air after pressureless sintering at 1750°C for 3 h in Ar. Thin films of the LaAlO3 on Si (100) were obtained by rf magnetron sputtering using the target and oxygen-annealing the as-deposited films.  相似文献   

17.
Paste samples of tricalcium aluminate alone, with CaCl2, with gypsum, and with gypsum and CaCl2 were hydrated for up to 6 months and the hydration products characterized by SEM, XRD, and DTA. Tricalcium aluminate hydrated initially to a hexagonal hydroaluminate phase which then changed to the cubic form; the transformation rate depended on the size and shape of the sample and on temperature. The addition of CaCl2 to tricalcium aluminate resulted in the formation of 3CaO · Al2O3· CaCl2·10H2O and 4CaO · Al2O3· 13H2O, or a solid solution of the two. The chloride retarded the formation of the cubic phase 3CaO · Al2O3· 6H2O; the addition of gypsum resulted in the formation of monosulfoaluminate with a minor amount of ettringite. When chloride was added to tricalcium aluminate and gypsum, more ettringite was formed, although 3CaO · Al2O3· CaSO4· 12H2O and 3CaO · Al2O3· CaCl2· 10H2O were the main hydration products.  相似文献   

18.
We investigated the characteristics of calcium phosphate cements (CPC) prepared by an exothermic acid–base reaction between NH4H2PO4-based fertilizer (Poly-N) and calcium aluminate compounds (CAC), such as 3CaO · Al2O3 (C3A), CaO · Al2O3 (CA), and CaO · 2Al2O3 (CA2), in a series of integrated studies of reaction kinetics, interfacial reactions, in-situ phase transformations, and microstructure development. Two groups were compared: untreated and hydrothermally treated CPC specimens. The extent of reactivity of CAC with Poly-N at 25°C was in the following order: CA > C3A ≫ CA2. The formation of a NH4CaPO4· x H2O salt during this reaction was responsible for the development of strength in the CPC specimens. The in-situ phase transformation of amorphous NH4CaPO4· x H2O into crystalline Ca5(PO4)3(OH) and the conversion of hydrous Al2O3 gel →γ-AIOOH occur in cement bodies during exposure in an autoclave to temperatures up to 300°C. This phase transformation significantly improved mechanical strength.  相似文献   

19.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

20.
Single-crystal α-alumina (Al2O3) hexagonal platelets with a diameter of about 200 nm and 25 nm in thickness were synthesized by heating a mixture of boehmite and potassium sulfate at 1000°C for 2 h and washing with water. The potassium sulfate addition effects on the Al2O3 phase and morphology were investigated using differential thermal analysis (DTA), X-ray diffraction (XRD), and transmission electron microscopy (TEM). It was found that potassium sulfate addition helps in the formation of single-crystal α-Al2O3 hexagonal platelets and promotes phase transformation from intermediate γ-Al2O3 to α-Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号