首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The test described in this paper is part of an Electric Power Research Institute (EPRI) program (Research Program RP2172-2) to provide a test-verified analytical method of estimating capacities of concrete reactor containment buildings under internal overpressurization from postulated degraded core accidents.Phase 2 of the EPRI program, on which this paper is based, includes tests of five large-scale specimens with steel liner plates. The specimens represent structural elements of prestressed concrete containment buildings. Four full-scale square wall element specimens and one specimen representing the wall/basemat junction region were tested. This paper describes results of the wall/basemat junction region test.Results of this experimental work indicate that highly localized strains in the steel liner plate caused by internal overpressurization or other accident conditions can result in liner tearing and subsequent containment leakage. It appears that this liner tearing occurs in a controller manner. Extrapolating from these test results, leakage and depressurization is more likely to occur than global failure.  相似文献   

2.
In the US, concrete containment buildings for commercial nuclear power plants have steel liners that act as the internal pressure boundary. The liner abuts the concrete, acting as the interior concrete form. The liner is attached to the concrete by either studs or by a continuous structural shape (such as a T-section or channel) that is either continuously or intermittently welded to the liner. Studs are commonly used in reinforced concrete containments, while prestressed containments utilize a structural element as the anchorage. The practice in some countries follows the US practice, while in other countries the containment does not have a steel liner. In this latter case, there is a true double containment, and the annular region between the two containments is vented.This paper will review the practice of design of the liner system prior to the consideration of severe accident loads (overpressurization loads beyond the design conditions).An overpressurization test of a 1:6 scale reinforced concrete containment at Sandia National Laboratories resulted in a failure mechanism in the liner that was not fully anticipated. Post-test analyses and experiments have been conducted to understand the failure better. This work and the activities that followed the test are reviewed. Areas in which additional research should be conducted are given.  相似文献   

3.
Tension tests of concrete containment wall elements were conducted as part of a three-phase research program sponsored by the Electric Power Research Institute (EPRI). The objective of the EPRI experimental/analytical program is twofold. The first objective is to provide the utility industry with a test-verified analytical method for making realistic estimates of actual capacities of reinforced and prestressed concrete containments under internal over-pressurization from postulated degraded core accidents. The second objective is to determine qualitative and quantitative leak rate characteristics of typical containment cross-sections with and without penetrations. This paper covers the experimental portion the the EPRI program.The testing program for Phase 1 included eight large-scale specimens representing elements from the wall of a containment. Each specimen was 60-in (1525-mm) square, 24-in (610-mm) thick, and had full-size reinforcing bars. Six specimens were representative of prototypical reinforced concrete containment designs. The remaining two specimens represented prototypical prestressed containment designs.Various reinforcement configurations and loading arrangements resulted in data that permit comparisons of the effects of controlled variables on cracking and subsequent concrete/reinforcement/liner interaction in containment elements.Subtle differences, due to variations in reinforcement patterns and load applications among the eight specimens, are being used to benchmark the codes being developed in the analytical portion of the EPRI program.Phases 2 and 3 of the test program will examine leak rate characteristics and failure mechanisms at penetrations and structural discontinuities.  相似文献   

4.
The work presented in this paper is part of an EPRI-sponsored research program to develop experimentally verified methodology for predicting failure modes and leakage characteristics of concrete containments. This paper deals specifically with recent results of the analytical correlation and interpretation of full scale containment specimen tests. The tests under consideration are a wall/skirt-basemat specimen of a typical prestressed concrete containment, a specimen with a flawed liner to study liner crack growth, and a specimen with a typical steampipe penetration. Computational models of specimens are described, and pre-test and post-test analysis results are presented. The importance of local effects is discussed, and the role of specimen tests and analysis in failure prediction of containment structures is summarized.  相似文献   

5.
This paper discusses the features and construction of a reinforced-concrete containment model that has been built at Sandia National Laboratories in Albuquerque, New Mexico. The model Light-Water-Reactor (LWR) containment building was designed and built to the American Society of Mechanical Engineers (ASME) code by United Engineers and Constructors, Inc. The containment model will be tested to failure to determine its response to static internal overpressurization. The results from testing the heavily instrumented containment will be used to assess the capability of analytical methods for predicting the performance of containments subject to severe accident loads as part of the US Nuclear Regulatory Commission's program on containment integrity.The scaled dimensions of the cylindrical wall and hemispherical dome are typical of a full-size containment. Features representative of a prototypical containment and included in the heavily reinforced model are equipment hatches, personnel airlocks, several small piping penetrations, and a thin steel liner attached to the concrete by headed studs.  相似文献   

6.
A containment scale-model test, performed at Sandia National Laboratories, was loaded by overpressurization and the first leak was concluded to be caused by tears in the steel liner found near the equipment hatch. These tears were located in the vicinity of the vertical fold in between the general curved part and the embossment (vertical bend line). A 3D finite element analysis of the region near the equipment hatch, shows that high localized strains will develop in the vicinity of the bend line. It is shown that the liner separates from the concrete wall near the bend line when the containment expands. The tensioned liner will be in contact with the surface of the concrete wall in general, but near the vertical bend line the liner tends to be straightened out. This flexural behaviour cause high strains in the weld located in the bend line. The actual peak strain level is depending on the detailed geometry in the bend line and the failure strain level of a welded biaxial stressed zone is difficult to define. However, the analysis presented in this paper shows that the flexural behaviour in the bend line most likely contributed to the liner tears found in the scale-model test. A general conclusion from the study presented in this paper is that, the non-linear plastic behaviour of the liner is very sensitive to the detailed design and the interaction between the liner and the concrete.  相似文献   

7.
Loadings to cause severe accidents on containment buildings can include combinations of uniform internal pressure, dynamic pressure, and seismic. Most studies that have been conducted to predict containment building capacity have focused on the effect of overpressurization on containment performance. A simple methodology that permits rapid and reasonably accurate analysis for assessing the capacity of steel containment buildings due to global or local uniform or spatially varying dynamic loading was developed. An axisymmetric model was used and the circumferential variation of the pressure, displacements, and stress resultants were represented by Fourier series. Shell vibration and buckling analysis were performed using modified versions of BOSOR4 and BOSOR5 finite difference codes. The modified version of BOSOR5 allows the input of pressures that vary along the meridianal direction. These pressures were increased until failure of the containment occurred. Failure was defined to occur when membrane strains reached twice the yield strain or the bifurcation point was introduced. The applicability of this analysis method was verified by analyzing several problems as well as a simplified containment building. The axisymmetric analysis demonstrated a powerful tool to access the capacity of steel containment buildings.  相似文献   

8.
This paper is an overview of a Sandia National Laboratories, Albuquerque (SNLA) study of the performance of mechanical penetrations in light-water reactor (LWR) containment buildings that are subjected to severe accident environments. The study is concerned with modes of failure as well as the magnitude of leakage. The following tests have been completed, are under way, or are planned: (a) seals and gaskets have been tested to register the effects of radiation aging, thermal aging, seal geometry, and squeeze on seal and gasket materials in severe accident environments; (b) the performance of a full-scale airlock will be evaluated at severe accident temperature and pressure levels; (c) personnel airlock and equipment hatch tests were made on a model of a steel containment building; and (d) tests of mechanical penetrations are planned as part of a test on a model of a reinforced concrete building. This program is part of an overall US Nuclear Regulatory Commission (USNRC) effort to evaluate the integrity of LWR containment buildings.  相似文献   

9.
For a large nuclear power plant under normal operating conditions a leakage rate for the containment of 0.25 vol.%/day is admissible. During a successfully controlled LOCA leakages of the containment will be released through filters by the annulus* air exhausting system into the environment. During a core melt accident a pressurization of the containment has to be expected, which could lead to a failure of the containment due to overpressurization. When openings in the containment steel shell occur before a catastrophic failure, a depressurization into the annulus takes place. The area of the openings determines the depressurization rate and the thermodynamic conditions in the annulus. Furthermore the behaviour of the components being necessary for accident mitigation is influenced too. This paper discusses the thermodynamic consequences of leaks in the containment shell of a German PWR during a core melt accident. The results of those calculations are the necessary boundary condition for the estimation of fission product retention in the annulus.  相似文献   

10.
This paper describes the results of recent pneumatic pressure tests of steel containment models. These tests are part of the Containment Integrity Program whose objective is the qualification of methods for predicting containment response during severe accidents and extreme environments. Sandia National Laboratories is conducting this combined experimental and analytical program for the U.S. Nuclear Regulatory Commission (NRC). The long-range plans for the program include the following three containment loading conditions: static internal pressurization, dynamic internal pressurization, and seismic loadings. Steel, reinforced concrete, and prestressed concrete containment types are being considered.In the present experimental effort, models of steel containment structures are being subjected to static internal pressurization. The first set of models are about the size of hybrid-steel containments. Tests of these models are nearly finished. Testing of a large steel model, about of full size, will complete the static pressure experiments with steel models. Analysis of the models is paralleling the experimental effort.The Containment Integrity Program is being coordinated with other NRC programs on potential leakage of penetrations in containments. The results from all of the programs should provide a basis for predicting the structural and leakage behavior of containments during temperature and internal pressure loadings.  相似文献   

11.
The paper describes tests to determine the leakage behavior of inflatable seals when subjected to containment pressures that exceed the design basis.2 Inflatable seals are used to prevent leakage around personnel and escape lock doors in about 10% of the commercial nuclear power plant containment structures in the United States. All of the installations are in either Pressurized Water Reactor (PWR) or Boiling Water Reactor (BWR) Mark-Ill type containments. This work is a part of an overall effort at Sandia National Laboratories to develop proven techniques for evaluating the performance of Light Water Reactor (LWR) containment buildings for beyond design basis loadings.Inflatable seals were tested at both room temperature and at elevated temperatures representative of postulated severe accident conditions. Parameters that were monitored and recorded during each test were the internal seal pressure and temperature, chamber (containment) pressure, leakage past the seals, and temperature of the test chamber and fixture to which the seals were attached. An empirically based, analytical method is presented to predict the containment pressure at which significant leakage past inflatable seals can be expected.  相似文献   

12.
13.
Research is being conducted to address aging of the containment pressure boundary in light-water reactor plants. Objectives of this research are to (1) understand the significant factors relating to corrosion occurrence, efficacy of inspection, and structural capacity reduction of steel containments and of liners of concrete containments; (2) provide the U.S. Nuclear Regulatory Commission (USNRC) reviewers a means of establishing current structural capacity margins or estimating future residual structural capacity margins for steel containments and concrete containments as limited by liner integrity; and (3) provide recommendations, as appropriate, on information to be requested of licensees for guidance that could be utilized by USNRC reviewers in assessing the seriousness of reported incidences of containment degradation. Activities include development of a degradation assessment methodology; reviews of techniques and methods for inspection and repair of containment metallic pressure boundaries; evaluation of candidate techniques for inspection of inaccessible regions of containment metallic pressure boundaries; establishment of a methodology for reliability-based condition assessments of steel containments and liners; and fragility assessments of steel containments with localized corrosion.  相似文献   

14.
In the event of a severe core meltdown accident in a pressurised water reactor (PWR), core material can relocate into the lower head of the vessel resulting in significant thermal and pressure loads being imposed on the vessel. In the event of reactor pressure vessel (RPV) failure there is the possibility of core material being released towards the containment.On the basis of the loading conditions and the temperature distribution, the determination of the mode, timing, and size of lower head failure is of prime importance in the assessment of core melt accidents. This is because they define the initial conditions for ex-vessel events such as core/basemat interactions, fuel/coolant interactions, and direct containment heating. When lower head failure occurs (i) the understanding of the mechanism of lower head creep deformation; (ii) breach stability and its kinetic of propagation leading to the failure; (iii) and developing predictive modelling capabilities to better assess the consequences of ex-vessel processes, are of equal importance.The objective of this paper is to present an original characterization programme of vessel steel tearing properties by carrying out high temperature tearing tests on Compact Tension (CT) specimens.The influence of metallurgical composition on the kinetics of tearing is investigated as previous work on different RPV steels has shown a possible loss of ductility at high temperatures depending on the initial chemical composition of the vessel material. Small changes in the composition can lead to different types of rupture behaviour at high temperatures.The experimental programme has been conducted on various French RPV 16MND5 steels for temperatures ranging from 900 °C to 1100 °C. Comparisons between the tests performed on these various 16MND5 steels show that this approach is appropriate to characterize the difference in ductility observed at high temperatures.The aim of this experimental study is also to contribute to the definition of a tearing criterion by identifying, on the basis of CT results, the related material parameters at temperatures representative of the real severe accident conditions.This experimental campaign has been carried out in partnership with IRSN in the framework of a research programme whose purpose is to complete the mechanical properties database of 16MND5 steel and to model tearing failure in French RPV lower head vessels under severe conditions (Koundy et al., 2008).  相似文献   

15.
The potential failure mechanisms in LWR steel containment buildings subject to quasi-static pressurization and elevated temperature are identified. For each failure mechanism, the relevant structural response measures are discussed. For mechanisms involving leakage, the importance of seal performance is also discussed. Criteria that can be used to evaluate threshold environments are presented for several failure mechanisms. Results of tests on scale models and seal tests that support the criteria are referenced.  相似文献   

16.
Results of design verification tests for the FFTF reactor cavity liner system are presented which suggest that steel liners would retain their integrity even under certain hypothetical accident conditions, thus, avoiding the formation of hydrogen. When liner failures are postulated in hypothetical reactor vessel melttrough accidents, hydrogen levels can be controlled by an air purging system. The design of a containment purging and effluent scrubbing system is discussed.  相似文献   

17.
Study on a concrete filled structure for nuclear power plants   总被引:2,自引:0,他引:2  
The feasibility of a new structural system for nuclear power plant buildings utilizing concrete filled steel structures, termed ‘SC structural system' was studied. SC wall test specimens (1/5 scale) were manufactured and compressive loading tests were carried out to determine how to prevent buckling. Also, bending shear tests were performed using H-section wall specimens to determine the shear and bending characteristics of SC walls. This paper presents an outline of the feasibility study, and the various structural properties resulting from the experiments.  相似文献   

18.
Announcement     
A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measued strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given.  相似文献   

19.
A variety of different types of steel and concrete containments have been designed and constructed in the past. Most of the concrete containments had been pre-stressed, offering the advantage of small displacements and a certain leak-tightness of the concrete itself. However, considerable stresses in concrete as well as in the tendons have to be maintained during the whole lifetime of the plant in order to guarantee the required pre-stressing. The long-time behaviour and the ductility in the case of beyond-design-load cases must be verified. Contrary to a pre-stressed containment a reinforced containment will only be significantly loaded during test conditions or when needed in case of an accident. It offers additional margins which can be used especially for dynamic loads such as impacts or for beyond-design events.The aim of this paper is to show the feasibility of a so-called combined containment which means a containment capable of resisting both severe internal accidents and external hazards, mainly the aircraft crash impact as considered in the design of nuclear power plants in Germany.The concept is based on a lined reinforced containment without pre-stressing. The mechanical resistance function is provided by the reinforced concrete and the leak-tightness function is provided by a so-called composite liner made of non-metallic materials. Some results of tests performed at Siemens laboratories and at the University of Karlsruhe which show the capability of a composite liner to bridge over cracks at the concrete surface will be presented in the paper.The study shows that the combined reinforced concrete containment with a composite liner offers a robust concept with high flexibility with respect to load requirements, beyond-design events and geometrical shaping (arrangement of openings, an integration of adjacent structures). The concept may be further optimized by partial pre-stressing at areas of high concentration of stresses such as at transition zones or at disturbances around large openings.  相似文献   

20.
A computer code utilizing an appropriate finite element, material and constitutive model has been under development as a part of a comprehensive effort by the Electric Power Research Institute (EPRI) to develop and validate a realistic methodology for the ultimate load analysis of concrete containment structures. A preliminary evaluation of the reinforced and prestressed concrete modeling capabilities recently implemented in the ABAQUS-EPGEN code has been completed. This effort focuses on using a state-of-the-art calculational model to predict the behavior of large-scale reinforced concrete slabs tested under uniaxial and biaxial tension to simulate the wall of a typical concrete containment structure under internal pressure. This paper gives comparisons between calculations and experimental measurements for a uniaxially-loaded specimen. The calculated strains compare well with the measued strains in the reinforcing steel; however, the calculations gave diffused cracking patterns that do not agree with the discrete cracking observed in the experiments. Recommendations for improvement of the calculational models are given.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号