首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 547 毫秒
1.
2.
As a first part of our research focused on the synthesis of 17 beta-HSD type 1 inhibitors without estrogenic activity, we needed to identify a small, easy-to-handle pharmacophore able to block the enzymatic activity. Previous studies on the active site of the enzyme by affinity labeling gave us a basis for the design of steroidal inhibitors derivatives. Several estradiol derivatives bearing a short (three carbons) side chain in position 17 alpha or 16 alpha were synthesized and tested for their ability to inhibit the transformation of estrone into estradiol by 17 beta-HSD type 1 (cytosolic fraction of human placenta). We found that 16 alpha-derivatives of estradiol gave better 17 beta-HSD inhibition than their corresponding 17 alpha analogs. Among several chemical groups used in this study, we conclude that better 17 beta-HSD inhibition was obtained for compounds with a good leaving group at the end of side chain. Thus, an iodopropyl or a bromopropyl side chain at C16 alpha of estradiol (E2) inhibit efficiently the 17 beta-HSD type 1 with IC50 values of 0.42 and 0.46 microM, respectively. Their 17-keto analogs inhibit also the enzyme activity similarly. Since this kind of compounds inhibit the 17 beta-HSD type 1 in time-dependent manner and that enzymatic activity cannot be restored later, we conclude to inhibitor of inactivator type. This conclusion is in accordance with the correlation observed between the ability of leaving group to dissociate and their potency to inhibit 17 beta-HSD type 1. We have also observed that additional addition of untritiated estrone protect the enzyme against the inactivation caused by 16 alpha-bromopropyl-E2 suggesting a competitive inhibitor of 17 beta-HSD. The bromopropyl pharmacophore was then selected to be further added onto an antiestrogenic steroid nucleus.  相似文献   

3.
Enzymes with 17 beta-hydroxysteroid dehydrogenase (17 beta-HSD) activity catalyse reactions between the low-active female sex steroid, estrone, and the more potent estradiol, for example. 17 beta-HSD activity is essential for glandular (endocrine) sex hormone biosynthesis, but it is also present in several extra-gonadal tissues. Hence, 17 beta-HSD enzymes also take part in local (intracrine) estradiol production in the target tissues of estrogen action. Four distinct 17 beta-HSD isozymes have been characterized so far, and the data strongly suggests that different 17 beta-HSD isozymes have distinct roles in endocrine and intracrine metabolism of sex steroids. Current data suggest that 17 beta-HSD type 1 is the principal isoenzyme involved in glandular estradiol production both in humans and rodents. During ovarian follicular development and luteinization, rat 17 beta-HSD type 1 is regulated by gonadotropins, and the effects of gonadotropins are modulated by steroid hormones and paracrine growth factors. Human 17 beta-HSD type 1 favors the reduction reaction, thereby converting estrone to estradiol both in vitro and in cultured cells. Hence, the enzymatic properties of the enzyme are also in line with its suggested role in estradiol biosynthesis. Interestingly, 17 beta-HSD type 1 is also expressed in certain target tissues of estrogen action such as normal and malignant human breast and endometrium. Hence, 17 beta-HSD type 1 could be one of the factors leading to a relatively high tissue/plasma ratio of estradiol in breast cancer tissues of postmenopausal women. We conclude that 17 beta-HSD type 1 has a central role in regulating the circulating estradiol concentration as well as its local production in estrogen target cells.  相似文献   

4.
BACKGROUND: The steroid hormone 17beta-estradiol is important in the genesis and development of human breast cancer. Its intracellular concentration is regulated by 17beta-hydroxysteroid dehydrogenase, which catalyzes the reversible reduction of estrone to 17beta-estradiol. This enzyme is thus an important target for inhibitor design. The precise localization and orientation of the substrate and cofactor in the active site is of paramount importance for the design of such inhibitors, and for an understanding of the catalytic mechanism. RESULTS: The structure of recombinant human 17beta-hydroxysteroid dehydrogenase of type 1 (17beta-HSD1) in complex with estradiol at room temperature has been determined at 1.7 A resolution, and a ternary 17betaHSD1-estradiol-NADP+ complex at -150 degrees C has been solved and refined at 2.20 A resolution. The structures show that estradiol interacts with the enzyme through three hydrogen bonds (involving side chains of Ser142, Tyr155 and His221), and hydrophobic interactions between the core of the steroid and nine other residues. The NADP+ molecule binds in an extended conformation, with the nicotinamide ring close to the estradiol molecule. CONCLUSIONS: From the structure of the complex of the enzyme with the substrate and cofactor of the oxidation reaction, the orientation of the substrates for the reduction reaction can be deduced with confidence. A triangular hydrogen-bond network between Tyr155, Ser142 and O17 from estradiol probably facilitates the deprotonation of the reactive tyrosine, while the conserved Lys159 appears not to be directly involved in catalysis. Both the steroid-binding site and the NADPH-binding site can be proposed as targets for the design of inhibitors.  相似文献   

5.
The genotoxicity of the most potent carcinogen in cigarette smoke [4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)] is dependent on the relationship between its activation by cytochrome P450 enzymes and its detoxification by carbonyl reduction to NNK alcohol (NNAL) followed by glucuronidation. Recently, '11 beta-hydroxysteroid dehydrogenase' (11 beta-HSD 1) was identified to be responsible for NNK carbonyl reduction. It is now speculated that differences in tissue expression of 11 beta-HSD 1, as well as genetic polymorphisms, may have profound influences on the organospecificity and potency of NNK-induced cancerogenesis. Moreover, endogenous and exogenous substrates or inhibitors of 11 beta-HSD 1 may shift the NNK/NNAL equilibrium and favour NNK toxification in a variety of physiological and therapeutic situations. These issues are discussed here by Edmund Maser, who also describes how recent observations could provide the experimental base for epidemiological or clinical studies, which focus on polymorphisms in 11 beta-HSD 1 enzyme expression, as well as on implications of exposure to 11 beta-HSD 1 modulators and concurrent smoking.  相似文献   

6.
Two series of 6-alkylandrosta-4,6-diene-3,17-diones (5) and their 1,4,6-triene analogs 6 were synthesized as aromatase inhibitors to gain insight into the structure-activity relationship between varying the 6-n-alkyl substituents (C1-C7) and inhibitory activity. All of the steroids synthesized were extremely powerful competitive inhibitors of aromatase in human placental microsomes, with apparent Ki values for the 6-alkyl-4,6-diene steroids 5 ranging from 17 to 36 nM and with those for the 1,4,6-triene steroids 6 ranging from 2.5 to 58 nM. The 6-ethyl-1,4,6-triene compound 6b (Ki = 2.5 nM) was the most potent inhibitor among them. The 6-alkyl-1,4,6-triene steroids 6, except for the 6-methyl analog 6a, and higher affinity for aromatase than the natural substrate androstenedione (K(m) = 24 nM), and their inhibitory activities were more potent than the corresponding 4,6-diene steroids 5. In a series of the 4,6-diene steroids 5, compounds 5c-f with the n-alkyl chain substituents (C3 to C6) also had slightly higher affinity than androstenedione for dromatase. All of the 1,4,6-triene steroids 6 inactivated aromatase in a time-dependent manner, with k(inact) values ranging from 0.021 to 0.074 min-1; in contrast, the 4,6-diene analogs 5 did not. The inactivation was prevented by androstenedione, and no significant effect of L-cysteine on the inactivation was observed in each case. These results indicate that the length of the n-alkyl substituent at C-6 of androsta-1,4,6-triene-3,17-dione (6h), rather than its 4,6-diene analog 5h, plays a critical role in tight binding to the active site of aromatase. No significant correlation was observed between affinity for the enzyme and the inactivation ability of the 6-alkyl-1,4,6-trienes.  相似文献   

7.
Highly potent HIV-1 protease (HIVPR) inhibitors have been designed and synthesized by introducing bidentate hydrogen-bonding oxime and pyrazole groups at the meta-position of the phenyl ring on the P2/P2' substituents of cyclic ureas. Nonsymmetrical cyclic ureas incorporating 3(1H)-pyrazolylbenzyl as P2 and hydrophilic functionalities as P2' show potent protease inhibition and antiviral activities against HIV and have good oral bioavailabilities. The X-ray structure of HIVPR.10A complex confirms that the two pyrazole rings of 10A form bidentate hydrogen bonds with the side-chain oxygen (C=O) and backbone nitrogen (N-H) of Asp30/30' of HIVPR.  相似文献   

8.
The synthesis of seven 2,4-diamino-5,6,7,8-tetrahydro-7-substituted pyrido[4',3':4,5]furo[2,3-d]pyrimidines 1-6 are reported as nonclassical antifolate inhibitors of dihydrofolate reductase (DHFR) and compound 7 as a classical antifolate inhibitor of tumor cells in culture. The compounds were designed as conformationally restricted analogues of trimetrexate. The synthesis was accomplished from the cyclocondensation of 3-bromo-4-piperidone with 2, 4-diamino-6-hydroxypyrimidine to afford regiospecifically 2, 4-diamino-5,6,7,8-tetrahydropyrido[4',3':4,5]furo[2, 3-d]pyrimidine-7-hydrobromide (16). This in turn was alkylated with the appropriate benzyl halide to afford the target compounds 1-6. The classical antifolate 7 utilized 4-(chloromethyl)benzoyl-l-glutamic acid diethyl ester (17) instead of the benzyl halide for alkylation, followed by saponification to afford 7. Compounds 1-6 showed moderate inhibitory potency against DHFR from Pneumocystis carinii, Toxoplasma gondii, Mycobacterium avium, and rat liver. The classical analogue 7 was 88-fold more potent against M. avium DHFR than against rat liver DHFR. The classical analogue was also inhibitory against the growth of tumor cells, CCRF-CEM, and FaDu, in culture.  相似文献   

9.
10.
11.
While studying the bile acid synthetic pathway of hamsters, we discovered an NADP+-dependent liver microsomal 7alpha-hydroxycholesterol dehydrogenase (7alpha-HCD) activity that was not observed in rat liver microsomal fractions. The hamster liver microsomal 7alpha-HCD was purified to homogeneity using 2', 5'-ADP and cholic acid-agarose affinity chromatography. 7alpha-HCD displayed a molecular weight of approximately 34,000 on SDS-polyacrylamide gel electrophoresis; it is an intrinsic membrane protein of the hamster liver endoplasmic reticulum and exists as a multimeric aggregate in pure form. Partial N-terminal amino acid sequence analysis showed that 7alpha-HCD had high sequence similarity to human 11beta-hydroxysteroid dehydrogenase (11beta-HSD; 24/30 amino acid identity). The Km values for corticosterone and 7alpha-hydroxycholesterol were 1.2 and 1.9 microM, respectively, for purified 7alpha-HCD; both reactions displayed identical Vmax values (approximately 170 nmol/min/mg of protein). The IC50 of carbenoxolone, a competitive inhibitor of 11beta-HSD, was 75 nM for 7alpha-hydroxycholesterol dehydrogenation and 210 nM for corticosterone dehydrogenation. The tissue-specific expression in hamster was as follows: adrenal >/= liver > kidney > testis > brain > lung. Microsomal 7alpha-HCD is uniquely expressed in hamster liver and to some extent in human liver but not in rat liver. Western blot analysis with two antibodies elicited against an N-terminal peptide of the human 11beta-HSD and purified hamster liver 7alpha-HCD, respectively, suggested the presence of multiple forms of 7alpha-HCD in hamster liver, most likely due to the existence of a family of 11beta-HSD proteins. Since 7-oxocholesterol is a potent inhibitor of cholesterol 7alpha-hydroxylase, alternative mechanisms for regulation of bile acid synthesis may exist in human and hamster liver due to production of this metabolite and its potential as an oxysterol.  相似文献   

12.
It is well recognized that estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of the progestin, nomegestrol acetate, on the estrone sulfatase and 17beta-hydroxysteroid dehydrogenase (17beta-HSD) activities of MCF-7 and T-47D human breast cancer cells. Using physiological doses of estrone sulfate (E1S: 5 x 10(-9)M), nomegestrol acetate blocked very significantly the conversion of E1S to E2. In the MCF-7 cells, using concentrations of 5 x 10(-6)M and 5 x 10(-5) M of nomegestrol acetate, the decrease of E1S to E2 was, respectively, -43% and -77%. The values were, respectively, -60% and -71% for the T-47D cells. Using E1S at 2 x 10(-6) M and nomegestrol acetate at 10(-5) M, a direct inhibitory effect on the enzyme of -36% and -18% was obtained with the cell homogenate of the MCF-7 and T-47D cells, respectively. In another series of studies, it was observed that after 24 h incubation of a physiological concentration of estrone (E1: 5 x 10(-9)M) this estrogen is converted in a great proportion to E2. Nomegestrol acetate inhibits this transformation by -35% and -85% at 5 x 10(-7)M and 5 x 10(-5)M, respectively in T-47D cells; whereas in the MCF-7 cells the inhibitory effect is only significant, -48%, at 5 x 10(-5)M concentration of nomegestrol acetate. It is concluded that nomegestrol acetate in the hormone-dependent MCF-7 and T-47D breast cancer cells significantly inhibits the estrone sulfatase and 17beta-HSD activities which converts E1S to the biologically active estrogen estradiol. This inhibition provoked by this progestin on the enzymes involved in the biosynthesis of E2 can open new clinical possibilities in breast cancer therapy.  相似文献   

13.
14.
E2011, (5R)-3-[2-((1S)-3-cyano-1hydroxypropyl)benzothiazol- 6-yl]-5-methoxymethyl-2-oxazolidine, is a novel inhibitor of monoamine oxidase type A (MAO-A). We have characterized the neurochemical and pharmacological profiles of E2011 and compared them with those of known inhibitors of MAO-A. E2011 potently inhibited MAO-A with more than 30,000 times higher selectivity for MAO-A relative to MAO-B in rat brain homogenate. E2011 did not affect putative neural receptors or reuptake of biogenic amines into synaptosomes of rat brain, which suggests that it is specific to monoaminergic systems. In vivo, E2011 at a dose of 0.3 mg/kg p.o. exhibited potent MAO-A inhibitory activity, whereas MAO-B inhibition was not observed even at 100 mg/kg p.o. E2011 inhibited monoamine metabolism in the rat brain, but the effect disappeared 24 h after administration. Like other reversible MAO-A inhibitors, E2011 did not show a cumulative inhibitory effect during repeated administration for 7 days. However, inhibition of MAO-A by E2011 in ex vivo experiments appeared to be less potent than that by moclobemide. The MAO-A inhibition by E2011 was partially but significantly reversed by dialysis at 4 degrees C for 24 h, which indicates that E2011 could be dissociated from the enzyme. These findings suggest that E2011 is a reversible and highly selective inhibitor of MAO-A. The potency of inhibition by highly reversible MAO-A inhibitors such as E2011 is likely to be underestimated in ex vivo studies because of dilution of the homogenate in the assay system.  相似文献   

15.
We characterized the phospholipid inhibition of estradiol and progesterone binding to guinea-pig and human myometrial receptors. Of twelve compounds studied, phosphatidylinositol (PI), lysophosphatidic acid and lysophosphatidylcholine (lyso-PC) were the most active inhibitors (50% inhibition at 10(-5) M). Lyso-PC with fatty acid chain length C14:0 inhibited ligand binding both to estrogen receptor (ER) and progesterone receptor (PR), C16:0 only to PR and C18:0 neither to ER nor to PR. The lyso-derivates were more inhibitory than the parent compounds. The ionic detergent (sodium taurocholate) inhibited both ER and PR binding, but the non-ionic detergent (Triton X-100) only PR. Triton X-100 enhanced the PI-induced inhibition of ER binding by a factor of 10. PR was more sensitive to inhibition than ER in all cases. The type of inhibition was non-competitive. At term pregnancy, ligand binding to myometrial ER or PR was low or absent in humans, but moderate in the guinea-pig. Phospholipid extracts of human decidua and fetal membranes contained PI and phosphatidylserine rather than lyso-PC. The extract was a potent inhibitor of ligand binding to PR (50% inhibition at 10(-6) M phospholipid phosphorus), but not to ER. The physicochemical environment, modulated by phospholipids acting as detergents, may regulate sex steroid function also in vivo. This might have special significance for pregnancy maintenance.  相似文献   

16.
Bone is an estradiol-responsive tissue. Estrogen withdrawal during the menopause causes loss of bone mass and clinically relevant osteoporosis in a third of all women. Sufficient or impaired local production, as well as degradation of estradiol in cells present in the bone microenvironment might be an important mechanism of rescue or might contribute to the development of osteoporosis, respectively. We therefore investigated aromatase and 17beta-hydroxysteroid dehydrogenase type IV (17beta-HSD IV) expression in osteoblast- and osteoclast-like cells. Aromatase mRNA was increasingly expressed in myeloid THP 1 cells differentiated along the monocyte/phagocyte pathway exploiting vitamin D and either granulocyte-macrophage-stimulating factor (GMCSF) or macrophage-stimulating factor (MCSF). In long-term cultures, when sequentially exposed to vitamin D (days 0-21) and GMCSF (days 5-10) and plated on collagen, the amount of expression of aromatase mRNA steadily increased along with the increasing expression of osteopontin mRNA, alpha(v) integrin mRNA, c-fms (MCSF-receptor) mRNA and multinucleated cells developing. The conversion of estradiol from testosterone (10(-7) M/l) in the supernatants of dishes mirrored changes in aromatase mRNA expression and by day 21 rose to 30,000 ng/10(7) cells/24 h. 17Beta-HSD IV mRNA expression was abundant in undifferentiated THP 1 cells and was decreased to approximately 50% by day 21. Unstimulated SV-40 immortalized fetal osteoblasts did not express aromatase mRNA, but the expression was stimulated by the addition of the phorbol ester phorbol myristate acetate (PMA). Unstimulated osteoblasts from primary cultures did not express aromatase mRNA. Osteoblast-like osteosarcoma cells MG 63 expressed faint levels of aromatase mRNA in contrast to the osteosarcoma cell line HOS 58. 17Beta-HSD IV mRNA was expressed in fetal osteoblasts as well as in osteoblasts from primary culture, MG 63 and HOS 58 cells. In summary, we can show the expression of estradiol metabolizing enzymes in cells which are present in the bone microenvironment. Impaired aromatase expression and/or enhanced expression of 17beta-HSD IV may contribute to the pathogenesis of osteoporosis.  相似文献   

17.
A series of natural epimers of alpha-homonojirimycin and its N-alkylated derivatives have been prepared to investigate the contribution of the different chiral centers and conformation of the specificity and potency of inhibition of glycosidases. These epimers and N-alkylated derivatives are alpha-homonojirimycin (1), beta-homonojirimycin (2), alpha-homomannojirimycin (3), beta-homomannojirimycin (4), alpha-3,4-di-epi-homonojirimycin (5), beta-4,5-di-epi-homonojirimycin (6), N-methyl-alpha-homonojirimycin (7), and N-butyl-alpha-homonojirimycin (8). Compound 1 was a potent inhibitor of a range of alpha-glucosidases with IC50 values of 1 to 0.01 microM. Compounds 2, 3, and 4 were surprisingly inactive as inhibitors of beta-glucosidase and alpha- and beta-mannosidases but were moderately good as inhibitors of rice and some mammalian alpha-glucosidases. Compound 4 was active in the micromolar range toward all alpha-glucosidases tested. Furthermore, compound 4, which superimposes well on beta-l-fucose, was a 10-fold more effective inhibitor of alpha-l-fucosidase than 1-deoxymannojirimycin (12) and 3, with a Ki value of 0.45 microM. Only compounds 5 and 6 showed inhibitory activity toward alpha- and beta-galactosidases (6with an IC50 value of 6.4 microM against alpha-galactosidase). The high-resolution structure of 1 has been determined by X-ray diffraction and showed a chair conformation with the C1 OH (corresponding to the C6 OH in 1-deoxynojirimycin) predominantly equatorial to the piperidine ring in the crystal structure. This preferred (C1 OH equatorial) conformation was also corroborated by 1H NMR coupling constants. The coupling constants for 7 suggest the axial orientation of the C1 OH, while in 8 the C1 OH axial conformation was not observed. The C1 OH axial conformation appears to be responsible for more potent inhibition toward processing alpha-glucosidase I than alpha-glucosidase II. It has been assumed that the anti-HIV activity of alkaloidal glycosidase inhibitors results from the inhibition of processing alpha-glucosidase I, but 1, 7, and 8 were inactive against HIV-1 replication at 500 microg/mL as measured by inhibition of virus-induced cytopathogenicity in MT-4 cells. In contrast, the EC50 value for N-butyl-1-deoxynojirimycin (11), which also inhibits processing alpha-glucosidase I, was 37 microg/mL. Compound 7 has been shown to be a better inhibitor of alpha-glucosidase I than 1 and 8 both in vitro and in the cell culture system. These data imply that inhibition of HIV by glycosidase inhibitors can be due to factors other than simply inhibition of processing alpha-glucosidase I.  相似文献   

18.
3 beta-Hydroxysteroid dehydrogenase (3 beta-HSD)/delta 5-->4-isomerase activity in steroidogenic tissues is required for the synthesis of biologically active steroids. Previously, by use of dehydroepiandrosterone (3 beta-hydroxy-5-androsten-17-one, DHEA) as substrate, it was established that in addition to steroidogenic tissues 3 beta-HSD/delta 5-->4-isomerase activity also is expressed in extraglandular tissues of the human fetus. In the present study, we attempted to determine whether the C-5,C-6-double bond of DHEA serves to influence 3 beta-HSD activity. For this purpose, we compared the efficiencies of a 3 beta-hydroxy-5-ene steroid (DHEA) and a 3 beta-hydroxy-5 alpha-reduced steroid (5 alpha-androstane-3 beta,17 beta-diol, 5 alpha-A-diol) as substrates for the enzyme. The apparent Michaelis constant (Km) for 5 alpha-A-diol in midtrimester placenta, fetal liver, and fetal skin tissues was at least one order of magnitude higher than that for DHEA, viz the apparent Km of placental 3 beta-HSD for 5 alpha-A-diol was in the range of 18 to 40 mumol/l (n = 3) vs 0.45 to 4 mumol/l for DHEA (n = 3); for the liver enzyme, 17 mumol/l for 5 alpha-A-diol and 0.60 mumol/l for DHEA, and for the skin enzyme 14 and 0.18 mumol/l, respectively. Moreover, in 13 human fetal tissues evaluated the maximal velocities obtained with 5 alpha-A-diol as substrate were higher than those obtained with DHEA. A similar finding in regard to Kms and rates of product formation was obtained by use of purified placental 3 beta-HSD with DHEA, pregnenolone, and 3 beta-hydroxy-5 alpha-androstan-17-one (epiandrosterone) as substrates: the Km of 3 beta-HSD for DHEA was 2.8 mumol/l, for pregnenolone 1.9 mumol/l, and for epiandrosterone 25 mumol/l. The specific activity of the purified enzyme with pregnenolone as substrate was 27 nmol/mg protein.min and, with epiandrosterone, 127 nmol/mg protein.min. With placental homogenate as the source of 3 beta-HSD, DHEA at a constant level of 5 mumol/l behaved as a competitive inhibitor when the radiolabeled substrate, [3H]5 alpha-A-diol, was present in concentrations of 20 to 60 mumol/l, but at lower substrate concentrations the inhibition was of the mixed type; similar results were obtained with [3H]DHEA as the substrate at variable concentrations in the presence of a fixed concentration of 5 alpha-A-diol (40 mumol/l).(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

19.
In an earlier study, Liu et al. (Bioorg. Med. Chem. Lett. 1992, 2, 1741-1744) showed that both the E and Z isomers of 4',5'-didehydro-5'-fluoroaristeromycin were very potent irreversible inhibitors of S-adenosylhomocysteine (AdoHcy) hydrolase. However, it was unclear from a mechanistic standpoint whether these vinyl fluorides were themselves type-I mechanism-based inhibitors causing reduction of enzyme-bound NAD+ or whether they were prodrug for aristeromycin-5'-carboxaldehyde, which was the ultimate type-I inhibitor. To elucidate this mechanism of enzyme inhibition, (4'S)- and (4'R)-aristeromycin-5'-carboxaldehydes (1a,b) were synthesized in this study and shown to be potent type-I mechanism-based inhibitors of AdoHcy hydrolase with k2/Ki values of 4.4 x 10(6) and 8.2 x 10(4)M-1min-1, respectively. However, Using 19F NMR and HPLC, it was shown that (4'S)-4,5'-dedehydro-5'-fluoraristeromycin in the presence of AdoHcy hydrolase did not release fluoride ion or generate aristeromycin-5'-carboxaldehyde (1a,b). These results suggest that the E and Z isomers of 4',5'-didehydro-5'-fluoroaristeromycin are inactivating AdoHcy hydrolase by directly reducing NAD+ to NADH and not using the hydrolytic activity of the enzyme to generate aristeromycin-5'-carboxaldehyde.  相似文献   

20.
A new class of divalent thrombin inhibitors is described that contains an alpha-keto-amide transition-state mimetic linking an active site binding group and a group that binds to the fibrinogen-binding exosite. The X-ray crystallographic structure of the most potent member of this new class, CVS995, shows many features in common with other divalent thrombin inhibitors and clearly defines the transition-state-like binding of the alpha-keto-amide group. The structure of the active site part of the inhibitor shows a network of water molecules connecting both the side-chain and backbone atoms of thrombin and the inhibitor. Direct peptide analogues of the new transition-state-containing divalent thrombin inhibitors were compared using in vitro assays of thrombin inhibition. There was no direct correlation between the binding constants of the peptides and their alpha-keto-amide counterparts. The most potent alpha-keto-amide inhibitor, CVS995, with a Ki = 1 pM, did not correspond to the most potent divalent peptide and contained a single amino acid deletion in the exosite binding region with respect to the equivalent region of the natural thrombin inhibitor hirudin. The interaction energies of the active site, transition state, and exosite binding regions of these new divalent thrombin inhibitors are not additive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号