首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
根据活性阴离子均相聚合反应的特点,在正常的聚合温度下,若体系中无杂质存在,则链转移和链终止反应将不会发生,其结果便可获得分子量分布甚窄的聚合物。 我们选择丁基锂-苯乙烯(丁二烯)-苯的活性阴离子聚合体系,以氩气作保护气体,在略高于常温下聚合,得到了分子量几  相似文献   

2.
研究了丁二烯在三异丁基铝-环烷酸镨钕富集物—氯二异丁基铝催化体系中的聚合。考察了各种聚合条件对聚合物分子量及其分布的影响。通过调整催化剂用量、单体浓度、聚合温度等因素,可使聚合物的特性粘度在3—10之间变化,而且发现催化剂浓度及单体浓度均与聚合物分子量呈线性关系。  相似文献   

3.
采用新癸酸钕(简称Nd)/烷基铝[Al(i-Bu)2H或Al(i-Bu)3(简称Al)]/二异丁基氯化铝(简称Cl)催化剂对丁二烯(Bd)/异戊二烯(Ip)进行共聚合,考察了Al种类及单体配比对Bd/Ip共聚合的影响,通过凝胶渗透色谱(GPC)、傅里叶变换红外光谱和核磁共振氢谱表征了共聚物,研究了2种催化剂体系聚合过程中单体的竞聚率及所得共聚物的序列分布。结果表明,2种催化剂体系所得共聚物中聚丁二烯(PB)和聚异戊二烯(PI)链节的顺式-1,4-结构摩尔分数均超过97%,且Al(i-Bu)2H催化体系的活性明显高于Al(i-Bu)3催化体系,但前者所得共聚物的数均分子量相对较低,分子量分布较宽,GPC曲线呈双峰,而后者所得共聚物的GPC曲线呈单峰;随着单体Bd用量的增加,2种催化剂体系所得共聚物中PB链节的顺式-1,4-结构摩尔分数均超过99%,而PI链节的顺式-1,4-结构摩尔分数则随着单体Ip用量的增加而略有降低,且Al(i-Bu)3催化体系所得共聚物中2种链节的摩尔分数与单体用量基本一致,而Al(i-Bu)2H催化体系所得共聚物中PB链节含量略高于单体Bd用量;在2种催化体系中,Bd易于自身均聚,Ip更容易与Bd共聚合,以Al(i-Bu)3为助催化剂时,所得产物为无规共聚物;随着单体中Bd加入比例的增加,PB链节数均序列长度增加;随着Ip加入比例的增加,PI链节数均序列长度增加。  相似文献   

4.
对非均相催化的丁二烯气相聚合,基于聚合物多层模型,考虑催化剂颗粒间活性位初始浓度和粒径分布对聚合物分子量分布和粒径分布的影响,建立了聚合物分子量分布和粒径分布的数学模型。模拟了反应温度、催化剂颗粒间活性位初始浓度和粒径分布等因素的影响,结果表明。随着温度升高,聚合物颗粒平均粒径变小,粒径分布变窄,聚合物分子量变小,分子量分布变宽;催化剂颗粒间的活性组分负载越均匀,聚合物分子量越大,分子量分布和粒径分布越窄;随着催化剂平均粒径变大,聚合物分子量变小,分子量分布变宽,不存在催化剂颗粒粒径分布和聚合物颗粒粒径分布间的复制现象。模型模拟结果与实验结果吻合较好,可用于预测丁二烯气相聚合产物的分子量、分子量分布和粒径分布。  相似文献   

5.
以亚磷酸二烷基酯(简称P)为第三组分的铁系催化剂催化1,3-戊二烯(PD)聚合,考察了P的种类及用量、铝助催化剂(简称Al)的种类及用量对聚合的影响。结果表明,P和Al的结构对PD聚合活性影响较大,聚合活性随着P中烷基基团的增大而降低;Al对PD聚合活性的影响由强到弱为:三异丁基铝[Al(i-Bu)3]、三乙基铝、甲基铝氧烷。以2-乙基己酸铁(简称Fe)/Al(i-Bu)3/亚磷酸二乙酯(DEP)为催化剂,Al(i-Bu)3/Fe(摩尔比)为10和DEP/Fe(摩尔比)为2时,在50℃下具有高的PD聚合活性,所得聚合物数均分子量高,相对分子质量分布窄,1,2-结构含量高。  相似文献   

6.
研究了环烷酸钕(Nd)、Al(i-Bu)_2Cl(Cl)、Al(i-Bu)_3或Al(i-Bu)_2H 催化体系合成高顺式聚丁二烯时的聚合活性。发现在低催化剂用量(Nd/Bd×10~5=0.5 mol 比时),用Al(i-Bu)_2H 组成的催化剂活性较高,转化率可达92%。当Cl/Nd≤2.5(mol 比)时,Cl+Nd二元陈化液为均相;若Cl/Nd≥3.0时,则为非均相。而Al(i-Bu)_2H 先加在单体中,易于控制催化剂的相态和聚合物的分子量。  相似文献   

7.
以Nd(P204)3(简称Nd)/Al(i-Bu)2H(简称Al)/Al(i-Bu)2Cl(简称Cl)为催化剂,对异戊二烯(Ip)进行聚合,考察了Ip聚合的影响因素,并通过傅里叶变换红外光谱表征了聚合物的微观结构。结果表明,随着Al/Nd(摩尔比)的增大,聚合收率增大,聚合物的数均分子量减小,分子量分布变宽,顺式-1,4-结构摩尔分数下降,但均在98%以上;随着Cl/Nd(摩尔比)的增大,聚合收率先增大后减小,聚合物的重均分子量(珚Mw)减小,分子量分布变宽,顺式-1,4-结构摩尔分数略有下降,但均超过96%;随着三元陈化时间的延长,聚合收率减小,聚合物的珚Mw增大,分子量分布变窄,顺式结构无明显变化;随着聚合温度的升高,聚合收率先增大后减小,聚合物的珚Mw减小,分子量分布变宽,顺式-1,4-结构含量下降;在Al/Nd为5,Cl/Nd为2.5,三元陈化时间为60 min,聚合温度为30℃的最佳反应条件下所得聚合物的顺式-1,4-结构摩尔分数达到98.74%。  相似文献   

8.
吕挺  单国荣 《化工学报》2009,60(6):1581-1586
用改进溴化法对丙烯酰胺(AM)在聚丙烯酰胺(PAM)-聚乙二醇(PEG)-H2O双水相体系中的分配进行了研究,分配系数随PEG浓度、分子量的增加而减少,随PAM浓度、分子量的增大而增大,而随温度的升高先减小后增大。并在此基础上,对AM在PEG水溶液双水相聚合过程中单体在两相的分配进行了研究,考察了PEG浓度、单体浓度、温度对聚合过程中单体分配的影响。  相似文献   

9.
反式-1,4-聚异戊二烯的合成   总被引:6,自引:0,他引:6  
异戊二烯(Ip)在甲苯、环己烷及己烷中用VCl_3-Ti(OR)_4-Al(i-Bu)_3为催化剂均能聚合成反式-1,4-聚异戊二烯(TPI)。催化剂呈非均相,聚合有明显的诱导期。TPI的[η]与单体、烷基铝和钛化合物的浓度以及聚合温度和转化率均无关。当聚合在2—5公斤/厘米~2氢压下进行时,能显著降低聚合体系的粘度,但氢在本体系中不是有效的分子量调节剂。Ip中环戊二烯的含量≤20 ppm时对聚合无影响。  相似文献   

10.
本文考察了聚合时间、聚合温度、单体和主、助催化剂浓度对聚合物分子量的影响,以及链转移反应。测得了向单体和主、助催化剂链转移反应的速度常数。结果发现,聚合物分子量随聚合时间的延长而增加;链转移反应速度随聚合温度的升高而加快;主催化剂MoCl_4 是主要的链转移剂。  相似文献   

11.
Cobalt Diethyldithiocarbamate + Ethylaluminumsesquichloride used as a catalyst for the synthesis of hyperbranched, low solution viscosity, high molecular weight 1,4-cis-polybutadiene containing 20–40% of 1,2-vinyl bonds. The effect of solvent used, catalyst and monomer concentrations, Al:Co ratio, temperature, polymerization time on conversion of butadiene were studied as controlling parameters. Polymer microstructure, intrinsic viscosity, molecular mass distribution, branching index were measured in the butadiene polymerization. Polymerization process was carried out in one step by controlled radical-coordination mechanism. The productivity of the used catalyst is 20.0–50.0 kg Polymer/g Co?h with the 86.0–99.0% yield of polybutadiene. The obtained hyperbranched polybutadiene samples have branching indexes 0.30–0.75. Synthesized hyperbranched 1,4-cis + 1,2-polybutadiene has been used in transdermal drug delivery system.  相似文献   

12.
A novel MgCl2/SiO2‐supported Ziegler–Natta catalyst was prepared using a new one‐pot ball milling method. Using this catalyst, polyethylenes with different molecular weight distributions were synthesized. The effects of the [Si]/[Mg] ratio, polymerization temperature and [Al]/[Ti] ratio on the catalytic activity, the kinetic behaviour and the molecular weight and the polydispersity of the resultant polymer were studied. It was found that the polydispersity index of the polymer could be adjusted over a wide range of 5–30 through regulating the [Si]/[Mg] ratio and polymerization temperature, and especially when the [Si]/[Mg] ratio was 1.70, the polydispersity index could reach over 25. This novel bi‐supported Ziegler–Natta catalyst is thus useful for preparing polyethylene with a required molecular weight distribution using current equipment and technological processes. Copyright © 2005 Society of Chemical Industry  相似文献   

13.
Styrene polymerization was carried out with Ni(acac)2/MAO and Ni(acac)2/SiO2/MAO. The influence of reaction parameters (Al/Ni mole ratio, catalyst concentration, temperature and time polymerization) on styrene polymerization was evaluated. It was observed that both catalytic systems were affected by reaction parameters and that the heterogeneous catalyst presented higher activity than the homogeneous one. Polystyrenes with different molecular weight, stereoregularity and polydispersity were obtained. These results suggest that different active catalyst species could have been present. In addition, two types of methylaluminoxane (MAO) with different molecular weights were also evaluated as cocatalyst. As a result, the catalyst activity and stereospecificity were strongly affected by the MAO type.  相似文献   

14.
High molecular weight with long linear side branches are frequently used in oil pipelines as one of the main classes of drag reducer agents (DRAs). We studied the effects of polymerization conditions, including reaction temperature, monomer concentration and cocatalyst concentration ratio (Al/Ti), on the polymerization yield and molecular weight of the resultant poly(1-hexene) made by Ziegler–Natta catalyst and their consequent effects on the drag reduction efficiency in a loop test. The experimental results verified that the catalyst activity increased from 115 to 220 kgPH/molTi.atm, while the molecular weight of poly(1-hexene) dropped from 2100 to 1030 kDa, as the reaction temperature was increased from 0 to 50 °C. The loop test results also revealed that the highest pressure drop was achieved using the polymer synthesized at 0 °C and by subsequent increase in reaction temperature the pressure drop decreased. Furthermore, the catalyst activity increased from 143 to 262 kgPH/molTi.atm by increasing Al/Ti ratio, while the molecular weight increased up to a maximum level of 1500 kDa at Al/Ti = 143 and decreased at higher cocatalyst contents. Similarly, the results showed the maximum pressure drop of 20 % at Al/Ti = 143. Finally, by increasing monomer concentration, the catalyst activity and polymer molecular weight increased from 75 to 262 kgPH/molTi.atm for the former, and from 700 to 1800 kDa for the latter which resulted in maximum pressure drop by 25 %. Moreover, the pressure drop for each utilized poly(1-hexene) was increased proportionately with DRA’s concentration, and interestingly enough, DRAs were further effective at more turbulent flows with higher Reynolds numbers.  相似文献   

15.
Coordinative chain transfer polymerization (CCTP) of isoprene was investigated by using the typical Ziegler–Natta catalytic system [Nd(Oi-Pr)3/Al(i-Bu)2H/Me2SiCl2] with Al(i-Bu)2H as cocatalyst and chain transfer agent (CTA). The catalyst system exhibited high catalytic efficiency for the reversible CCTP of isoprene and yielded 6–8 polymer chains per Nd atom due to the high chain transfer ability of Al(i-Bu)2H. The narrow molecular weight distribution (Mw/Mn = 1.22–1.45) of the polymers, the good linear relationship between the Mn and yield of the polymer, and the feasible seeding polymerization of isoprene indicated the living natures of the catalyst species. Moreover, the living Nd-polyisoprene active species could further initiate the ring-opening polymerization of polar monomer (ε-caprolactone) to afford an amphiphilic block copolymer consisting of cis-1,4-polyisoprene and poly(ε-caprolactone) with controllable molecular weight and narrow molecular weight distribution.  相似文献   

16.
Ultra‐high‐molecular‐weight polyethylene (PE) with viscosity‐average molecular weight (Mv) of 3.1 × 106 to 5.2 × 106 was prepared with a heterogeneous Ziegler–Natta MgCl2 (ethoxide type)/TiCl4/triethylaluminum catalyst system under controlled conditions. The optimum activity of the catalyst was obtained at a [Al]/[Ti] molar ratio of 61 : 1 and a polymerization temperature of 60°C, whereas the activity of the catalyst increased with monomer pressure and decreased with hydrogen concentration. The titanium content of the catalyst was 2.4 wt %. The rate/time profile of the catalyst was a decay type with a short acceleration period. Mv of the PE obtained decreased with increasing hydrogen concentration and polymerization temperature. The effect of stirrer speeds from 100 to 400 rpm did not so much affect the catalyst activity; however, dramatic effects were observed on the morphology of the polymer particles obtained. A stirrer speed of 200 rpm produced PE with a uniform globulelike morphological growth on the polymer particles. The particle size distributions of the polymer samples were determined and were between 14 and 67 μm. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
The data on the effects of polymerization duration, cocatalyst, and monomer concentrations upon ethylene polymerization in the absence of hydrogen, and the effect of an additional chain transfer agent (hydrogen) on the molecular weight (MW), molecular weight distribution (MWD), and content of vinyl terminal groups for polyethylene (PE) produced over the supported titanium‐magnesium catalyst (TMC) are obtained. The effects of these parameters on nonuniformity of active sites for different chain transfer reactions are analyzed by deconvolution of the experimental MWD curves into Flory components. It has been shown that the polymer MW grows, the MWD becomes narrower and the content of vinyl terminal groups in PE increases with increasing polymerization duration. It is assumed to occur due to the reduction of the rate of chain transfer with AlEt3 with increasing polymerization duration. The polydispersity of PE is found to rise with increasing AlEt3 concentration and decreasing monomer concentration due to the emergence of additional low molecular weight Flory components. The ratios of the individual rate constants of chain transfer with AlEt3, monomer and hydrogen to the propagation rate constant have been calculated. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

18.
研究了以亚磷酸二异辛酯为配体的氯化稀土配合物(简称Nd)与三异丁基铝(简称Al)组成的二元稀土催化体系催化苯乙烯与异戊二烯的共聚行为,考察了Al与Nd的摩尔比、聚合温度、单体配比等对共聚行为及共聚物组成和链结构的影响。结果表明,该催化体系能够实现异戊二烯的均聚,但不能催化苯乙烯均聚,而催化二者共聚的活性取决于单体配比且低于异戊二烯的均聚。所得产物为无规共聚物,其中异戊二烯链节以顺式-1,4-结构为主(95%~96%),含少量3,4-结构,几乎不含反式-1,4-结构;共聚物中的结合苯乙烯量随Al与Nd的摩尔比、聚合温度及单体配比中苯乙烯量的增加而增大。苯乙烯以孤立单元形式嵌入在异戊二烯链节之间,因此所得共聚物为"准"无规共聚物;共聚物的重均分子量最高可达19.3×105,分子量分布随着共聚物中结合苯乙烯量的增加而变宽,甚至出现双峰分布。  相似文献   

19.
采用Nd(Oct)3、Al(i-Bu)3、AlCl3,AlCl3溶解于Al(i-Bu)3中配制成一定浓度的溶液作为氯配体。Nd(Oct)3与AlCl3在室温(20℃)下反应后,再加入一定量的Al(i-Bu)3,可配制成均相高效催化剂体系。所得聚合物同时具备顺-1,4含量高(96%)、高分子质量(105)、相对较窄的分子质量分布(Mw/Mn=2.1~3.0)等特征。更重要的是,证明了一些活性聚合的特征:a)无链终止反应;b)Mn和转化率线性相关;c)"种子"聚合中分子质量逐渐增加。虽然与典型的"种子"聚合有一些偏离,比如分子质量分布稍宽,Mn~转化率曲线不过原点,但仍然可认为是可控聚合。  相似文献   

20.
The gas phase polymerization of 1,3‐butadiene (Bd), with supported catalyst Nd(naph)3/Al2Et3Cl3/Al(i‐Bu)3 or/and Al(i‐Bu)2H, was investigated. The polymerization of Bd with neodymium‐based catalysts yielded cis‐1,4 (97.2–98.9%) polybutadiene with controllable molecular weight (MW varying from 40 to 80 × 104 g mol?1). The effects of reaction temperature, reaction time, Nd(naph)3/Al(i‐Bu)3 molar ratio, and cocatalyst component on the catalytic activity and molecular weight of polymers were examined. It was found that there are two kinds of active sites in the catalyst system, which mainly influenced the MW and molecular weight distribution of polybutadiene. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 1945–1949, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号