首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
5A02 aluminum alloy and pure copper were joined by friction stir welding (FSW). A defect-free joint was obtained when one of process parameters, i.e. the traverse speed was lowered from 40 mm/min to 20 mm/min. A good mixing of Al and Cu was observed in the weld nugget zone (WNZ). A large amount of fine Cu particles were dispersed in the upper part of the WNZ producing a composite-like structure. In the lower part, nano-scaled intercalations were observed and identified by transmission electron microscopy (TEM). These layered structures were subsequently confirmed as Al4Cu9 (γ), Al2Cu3 (ε), Al2Cu (θ), respectively. Formation of these microstructures caused an inhomogeneous hardness profile. Particularly, a distinct rise in hardness was noticed at the Al/Cu interface. Excellent metallurgical bonding between Al and Cu gave rise to good behaviors in the tensile and bending strength.  相似文献   

2.
Joints of Al 5186 to mild steel were performed by using friction stir welding (FSW) technique. The effects of various FSW parameters such as tool traverse speed, plunge depth, tilt angle and tool pin geometry on the formation of intermetallic compounds (IMCs), tunnel formation and tensile strength of joints were investigated. At low welding speeds due to the formation of thick IMCs (which was characterized as Al6Fe and Al5Fe2) in the weld zone the tensile strength of joints was very poor. Even at low welding speeds the tunnel defect was formed. As the welding speed increased, the IMCs decreased and the joint exhibited higher tensile strength. The tunnel defect could not be avoided by using cylindrical 4 mm and 3 mm pin diameter. By using a standard threaded M3 tool pin the tunnel was avoided and a bell shape nugget formed. Therefore tensile strength of the joint increased to 90% of aluminum base alloy strength. At higher welding speed and lower tool plunge depth, the joint strength decreased due to lack of bonding between aluminum and steel. Based on the findings, a FSW window has been developed and presented.  相似文献   

3.
Microstructure and mechanical properties of friction stir welded copper   总被引:1,自引:0,他引:1  
The main objective of this investigation was to apply friction stir welding technique (FSW) for joining of 2 mm thick copper sheet. The defect free weld was obtained at a tool rotational and travel speed of 1,000 rpm and 30 mm/min, respectively. Mechanical and microstructural analysis has been performed to evaluate the characteristics of friction stir welded copper. The microstructure of the weld nugget (WN) consists of fine equiaxed grains. Similarly, the elongated grains in the thermomechanically affected zone (TMAZ) and coarse grains in the heat-affected zone (HAZ) were observed. The hardness values in the WN were higher than the base material. Eventually HAZ shows lowest hardness values because of few coarse grains presence. Friction stir welded copper joints passes 85% weld efficiency as compared to the parent metal.  相似文献   

4.
The effect of friction stir welding (FSW) parameters on the microstructure and mechanical properties of 5.6 mm thick 2219Al-T6 joints was investigated in detail. While the sound FSW joints could be obtained under lower rotation rates of 400–800 rpm and welding speeds of 100–800 mm/min; higher rotation rates of 1200–1600 rpm easily led to the tunnel and void defects. The FSW thermal cycle resulted in low hardness zones (LHZs) on both retreating side (RS) and advancing side (AS). The LHZs may be located at the interface between the nugget zone (NZ) and the thermo-mechanically affected zone (TMAZ), at the TMAZ, or at the heat affected zone under the varied welding parameters. The tensile strength of FSW 2219Al-T6 joints increased when increasing the welding speed from 100 to 800 mm/min, and was weakly dependent on the rotation rates from 400 to 1200 rpm. The FSW 2219Al-T6 joints fractured along the LHZ on the RS.  相似文献   

5.
The aim of this work is to present a case study relating to the dissimilar friction stir welding (FSW) ability of AA 7075‐T651 and AA 6013‐T6 by applying pin offset technique. An orthogonal array L18 was conducted to perform the overlapped weld seams using three different values of pin offset, welding speed and tool rotational speed along with two different pin profiles determine the impact of welding parameters on the tensile properties of friction stir welded joints. The nugget zone for each of overlapped weld seams exhibited a complex structure and also, the pin offset and profile also were found to have a great impact on the microstructural evolution of the nugget zone. The ultimate tensile strength, elongation at the rapture and bending strength of welded joints were measured in the ranges of 194–215 MPa, 1.79–3.34 % and 203–352 MPa. From the Taguchi based Grey relational analysis, the optimum welding condition was determined for the welded joint performed using a single fluted pin profile with the zero pin offset, tool rotational speed of 630 min?1 and welding speed of 63 mm/min. Microstructural and macro‐structural observations revealed that welded joints exhibiting lower tensile strength are consistent of various types of defects (e. g. cracks, tunnels and cavities). The fracture location of welded joints was found to be on the heat affected zone and between the heat affected zone and AA 6013‐base metal. The tool and pin wear was not observed during the welding applications  相似文献   

6.
This paper aims to demonstrate the successful friction stir welding (FSW) conditions of AM20 magnesium alloy. The maximum yield strength and ultimate tensile strength of weld were found to be 75% and 65% of the base metal strength, respectively. The maximum bending angle of the welded joint was 45°. Observations revealed that less plunging depth, high shoulder diameter, and low tool rotational speed and welding speed give better tensile properties. Maximum temperature was observed at 1?mm away from the tool shoulder toward the advancing side. Micro-hardness variation is found to be decreasing along the depth of the weld, and nugget zone (NZ) gives the higher hardness values when compared with base material (BM) and other welded zones. Needle-like grains of the BM became equiaxed grains due to grain recrystalized by the FSW process. The grains in the NZ were finer than thermo-mechanically affected zone and almost same size of grains observed at bottom, middle, and top of the NZ.  相似文献   

7.
In the present work, 80 mm thick 6082Al alloy plates were successfully double-side welded by friction stir welding(FSW). The relationship between the microstructures and mechanical properties was built for the double-side FSW butt joint with more attention paid to the local characteristic zones. It was shown that a phenomenon of microstructural inhomogeneity existed in the nugget zone(NZ) through the thickness direction. The grain size presented an obvious gradient distribution from the top to the bottom for each single-pass weld, and the microhardness values decreased from both surfaces to the middle of the NZ.The lowest hardness zone(LHZ) exhibited a "hyperbolical"-shaped distribution extending to the middle of the NZ. Similar tensile properties were obtained in the three sliced specimens of the FSW joint, and the joint coefficient reached about 70% which achieved the same level as the conventional FSW Al alloy joints. Finite element modeling proved that the "hyperbolical"-shaped heat affected zone(HAZ) was beneficial to resisting the strain concentration in the middle layer specimen which helped to increase the tensile strength. Based on the analysis of the hardness contour map, tensile property and microstructural evolution of the joints, an Isothermal Softening Layer(ISL) model was proposed and established, which may have a helpful guidance for the optimization on the FSW of ultra-thick Al alloy plates.  相似文献   

8.
High strength aluminium alloys generally present low weldability because of the poor solidification microstructure, porosity in the fusion zone and loss in mechanical properties when welded by fusion welding processes which otherwise can be welded successfully by comparatively newly developed process called friction stir welding (FSW). This paper presents the effect of post weld heat treatment (T6) on the microstructure and mechanical properties of friction stir welded 7039 aluminium alloy. It was observed that the thermo-mechanically affected zone (TMAZ) showed coarser grains than that of nugget zone but lower than that of heat affected zone (HAZ). The decrease in yield strength of welds is more serious than decrease in ultimate tensile strength. As welded joint has highest joint efficiency (92.1%). Post weld heat treatment lowers yield strength, ultimate tensile strength but improves percentage elongation.  相似文献   

9.
对8 mm厚5083-H321铝合金板进行了搅拌摩擦焊接试验,研究了焊接工艺参数对搅拌摩擦焊接头显微组织和力学性能的影响。结果表明:该搅拌摩擦焊接头焊核区显微组织为细小的等轴晶组织,热机影响区为拉伸弯曲变形组织,热影响区非常窄,其晶粒尺寸与母材相当;综合接头表面形貌和拉伸性能得到较佳的搅拌摩擦焊接工艺参数为使用搅拌针为三棱形带螺纹、轴肩为内扣型的搅拌头,主轴转速为300 r·min-1,焊接速率为120 mm·min-1;在该工艺条件下接头表面成形良好,抗拉强度可达到母材的94.5%。  相似文献   

10.
The joining of dissimilar Al–Cu alloy AA2219-T87 and Al–Mg alloy AA5083-H321 plates was carried out using friction stir welding (FSW) technique and the process parameters were optimized using Taguchi L16 orthogonal design of experiments. The rotational speed, transverse speed, tool geometry and ratio between tool shoulder diameter and pin diameter were the parameters taken into consideration. The optimum process parameters were determined with reference to tensile strength of the joint. The predicted optimal value of tensile strength was confirmed by conducting the confirmation run using optimum parameters. This study shows that defect free, high efficiency welded joints can be produced using a wide range of process parameters and recommends parameters for producing best joint tensile properties. Analysis of variance showed that the ratio between tool shoulder diameter and pin diameter is the most dominant factor in deciding the joint soundness while pin geometry and welding speed also played significant roles. Microstructural studies revealed that the material placed on the advancing side dominates the nugget region. Hardness studies revealed that the lowest hardness in the weldment occurred in the heat-affected zone on alloy of 5083 side, where tensile failures were observed to take place.  相似文献   

11.
For friction stir welding (FSW), a new idea is put forward in this paper to weld the thin plate of Al alloy by using the rotational tool without pin. The experiments of FSW are carried out by using the tools with inner-concave-flute shoulder, concentric-circles-flute shoulder and three-spiral-flute shoulder, respectively. The experimental results show that the grain size in weld nugget zone attained by the tool with three-spiral-flute shoulder is nearly the same while the grain sizes decrease with the decrease of welding velocity. The displacement of material flow in the heat-mechanical affected zone by the tool with three-spiral-flute shoulder is much larger than that by the tool with inner-concave-flute shoulder or concentric-circles-flute shoulder. The above-mentioned results are verified by numerical simulation. For the tool with three-spiral-flute shoulder, the tensile strength of FSW joint increases with the decrease of welding velocity while the value of tensile strength attained by the welding velocity of 20 mm/min and the rotation speed of 1800 r/min is about 398 MPa, which is 80% more than that of parent mental tensile strength. Those verify that the tool with three-spiral-flute shoulder can be used to join the thin plate of Al alloy.  相似文献   

12.
In order to obtain ultrafine grained structure, commercially pure aluminium (Al 1050) plates were subjected up to 8 passes of Incremental Equal Channel Angular Pressing (IECAP) following route C. Plates in different stages of IECAP were joined using Friction Stir Welding (FSW). All welded samples were investigated to determine their mechanical properties and structure evolution in the joint zone. The joining process reduced mechanical strength of material in the nugget zone, which was explained by the grain growth resulting from temperature rise during FSW. Nevertheless, the obtained results are promising in comparison to other methods of joining aluminium.  相似文献   

13.
In order to study the relationship between residual stress (RS) and the microstructure of friction stir weld (FSW), RS profiles through thickness in the un-welded aluminum alloy 7075 plate and in middle layer of its FSW joint were determined nondestructively by the short-wavelength X-ray diffraction (SWXRD) and neutron diffraction. Microstructure and mechanical properties of the FSW joint were also studied by optical microscopic analysis, and microhardness and tensile strength measurements. RS profiles measured by the two methods had the same distribution trend. The maximum tensile RS tested by SWXRD and neutron diffraction in transverse and longitudinal direction occurred in the weld nugget. Microhardness in the direction perpendicular to the weld line showed a “W” shape distribution. Position of the local maximal extremum of RS in thermo-mechanically affected zone corresponded to that of minimal microhardness. The grain-refined strengthening caused by the recrystallization in the weld nugget kept the joint from fracturing at this region notwithstanding the maximum tensile RS. And the tensile fracture occurred near the boundary of welding zone and thermo-mechanically affected zone where minimum of hardness and maximum of RS appear at the same position.  相似文献   

14.
Nowadays aluminum alloys substitute copper in various applications for weight reduction and cost savings. This paper presents fuzzy-grey Taguchi technique for optimization of friction stir welding condition with seven weld quality attributes of dissimilar Al/Cu joints with the minimum number of experiments for effective productivity and product quality. Taguchi's L16 orthogonal array was used to conduct the experiments. Fuzzy inference system was adapted to convert the multi quality characteristics into an equivalent single quality parameter which was optimized by Taguchi approach. Four parameters namely, rotational speed of the tool, welding speed, plunging depth and tool pin offset were varied in four levels for investigating the effects on the process output like tensile strength, compressive strength, percentage of elongation, bending angle, weld bead thickness and average hardness at the nugget zone. The hardness profile is consistent with the variation of the structure within the nugget zone (NZ). Confirmation experiment was conducted using predicted optimum parameter setting and it showed that the proposed approach could efficiently optimize weld quality parameters. The microstructural analyses were also performed for all the zones of the joints at both Al and Cu sides. It revealed the finer grain size at the NZ compared to the base material due to dynamic recrystallization.  相似文献   

15.
A high strength Al–Zn–Mg alloy AA7039 was friction stir welded by varying welding and rotary speed of the tool in order to investigate the effect of varying welding parameters on microstructure and mechanical properties. The friction stir welding (FSW) process parameters have great influence on heat input per unit length of weld, hence on temperature profile which in turn governs the microstructure and mechanical properties of welded joints. There exits an optimum combination of welding and rotary speed to produce a sound and defect free joint with microstructure that yields maximum mechanical properties. The mechanical properties increase with decreasing welding speed/ increasing rotary speed i.e. with increasing heat input per unit length of welded joint. The high heat input joints fractured from heat affected zone (HAZ) adjacent to thermo-mechanically affected zone (TMAZ) on advancing side while low heat input joints fractured from weld nugget along zigzag line on advancing side.  相似文献   

16.
This paper reports the effect of friction stir welding(FSW)process parameters on tensile strength of cast LM6 aluminium alloy.Joints were made by using dierent combinations of tool rotation speed,welding speed and axial force each at four levels.The quality of weld zone was investigated using macrostructure and microstructure analysis.Tensile strength of the joints were evaluated and correlated with the weld zone hardness and microstructure.The joint fabricated using a rotational speed of 900 r/min,a weldin...  相似文献   

17.
In this paper, the influences of friction stir welding (FSW) and post‐weld heat treatment (PWHT) on the microstructures and tensile properties of Al–Cu–Li alloy are investigated. After FSW, strengthen loss occurred in the welding area. Remarkable softening occurs in the thermo‐mechanically affected zone (TMAZ) resulting from dissolution of Al3Li (δ′) phases. Recrystallization and precipitation of ultra‐fine δ′ phases take place in the nugget zone (NZ) that lightens the softening degree of this zone. A noteworthy enhancement in the hardness and tensile strength of the joint is achieved after T8 re­aging treatment (3% ? pre‐deformation, 30 h at 152 °C). However, re‐solution treatment coupled with re‐aging treatment leads to ductility deterioration in the joint because coplanar slip of coarse Al3Li phases induces severe stress concentration during plastic deformation.
  相似文献   

18.
Stationary shoulder friction stir welding (SSFSW) butt welded joints were fabricated successfully for AA6061-T6 sheets with 5.0 mm thickness. The welding experiments were performed using 750–1500 rpm tool rotation speeds and 100–300 mm/min welding speeds. The effects of welding parameters on microstructure and mechanical properties for the obtained welds were discussed and analyzed in detail. It is verified that the defect-free SSFSW welds with fine and smooth surface were obtained for all the selected welding parameters, and the weld transverse sections are obviously different from that of conventional FSW joint. The SSFSW nugget zone (NZ) has “bowl-like” shapes with fairly narrow thermal mechanically affected zone (TMAZ) and heat affected zone (HAZ) and the microstructures of weld region are rather symmetrical and homogeneous. The 750–1500 rpm rotation speeds apparently increase the widths of NZ, TMAZ and HAZ, while the influences of 100–300 mm/min welding speeds on their widths are weak. The softening regions with the average hardness equivalent 60% of the base metal are produced on both advancing side and retreating side. The tensile properties of AA6061-T6 SSFSW joints are almost unaffected by the 750–1500 rpm rotation speeds for given 100 mm/min, while the changing of welding speed from 100–300 mm/min for given 1500 rpm obviously increased the tensile strength of the joint and the maximum value for welding parameter 1500 rpm and 300 mm/min reached 77.3% of the base metal strength. The tensile fracture sites always locate in HAZ either on the advancing side or retreating side of the joints.  相似文献   

19.
The relatively new welding process friction stir welding (FSW) was applied in this research work to join 6 mm thick dissimilar aluminum alloys AA5083-H111 and AA6351-T6. The effect of tool rotational speed and pin profile on the microstructure and tensile strength of the joints were studied. Dissimilar joints were made using three different tool rotational speeds of 600 rpm, 950 rpm and 1300 rpm and five different tool pin profiles of straight square (SS), straight hexagon (SH), straight octagon (SO), tapered square (TS), and tapered octagon (TO). Three different regions namely unmixed region, mechanically mixed region and mixed flow region were observed in the weld zone. The tool rotational speed and pin profile considerably influenced the microstructure and tensile strength of the joints. The joint which was fabricated using tool rotational speed of 950 rpm and straight square pin profile yielded highest tensile strength of 273 MPa. The two process parameters affected the joint strength due to variations in material flow behavior, loss of cold work in the HAZ of AA5083 side, dissolution and over aging of precipitates of AA6351 side and formation of macroscopic defects in the weld zone.  相似文献   

20.
Investigating the joining capability of magnesium AZ31 alloy sheets and aluminium 1350 alloy sheets with the application of resistance spot welding was the objective of this study. The weld current values used in the welding process of Al–Mg sheets were 22, 23, 25, 27, 29, 31, and 33 kA. The studies examined the nugget geometries of joined specimens, recorded the scanning electron microscopy (SEM) images of the welded zone and the fracture surface, and recorded the energy-dispersive spectroscopy (EDS, semi-quantitative) analyses. The results of the experiment confirmed that nugget geometry was different for the Al and Mg sides. Tensile shear tests carried out on the welded joints determined their strength and failure mode. The increase in the weld current and duration resulted in an increase in the nugget size and the weld strength. According to observations, the tensile load bearing capacity (TLBC) increased up to 29 kA of the weld current value. It was also found that tearing during fracture occurred in two different ways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号