首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We propose a pseudo-random asynchronous duty cycle MAC protocol in wireless sensor networks. The proposed protocol adopts a hash function to determine the next wake-up times. As the next wake-up times are known in advance, the sensor nodes do not need to remain active until their intended receivers wake up. Given an end-to-end delay requirement, the proposed protocol significantly decreases energy consumption by reducing the idle listening time.  相似文献   

2.
Wireless Networks - Wireless sensor networks (WSNs) are often used for monitoring environmental conditions. One of the most important tasks in a WSN is to gather sensed data for the users to...  相似文献   

3.
In wireless sensor networks, a clustering-based technique is considered as an efficient approach for supporting mobile sinks without using position information. It exploits a Backbone-based Virtual Infrastructure (BVI) which uses only cluster heads (CHs) to construct routing structures. Since sensor nodes have constrained energy and are failure-prone, the effective design of both a clustering structure to construct a BVI and a routing protocol in the BVI is an important issue to achieve energy-efficient and reliable data delivery. However, since previous studies use one-hop clustering for a BVI, they are not robust against node and link failures and thus leading low data delivery ratio. They also use flooding-based routing protocols in a BVI and thus leading high energy consumption. Thus, in this paper, we propose a rendezvous-based data dissemination protocol based on multi-hop clustering (RDDM). Since RDDM uses a multi-hop clustering to provide enough backup sensor nodes to substitute a CH and enough backup paths between neighbor CHs, it can provide high robustness against node and link failures. By using a rendezvous CH, RDDM constructs routing paths from source nodes to mobile sinks without flooding in our BVI and thus can save energy of sensor nodes. By considering movement types of sinks, RDDM finds out a shorter path between a source node and a mobile sink through signaling only between neighbor CHs and thus can reduce the energy consumption. Analysis and simulation results show that RDDM provides better performance than previous protocols in terms of energy consumption and data delivery ratio.  相似文献   

4.
Hawbani  Ammar  Wang  Xingfu  Kuhlani  Hassan  Karmoshi  Saleem  Ghoul  Rafia  Sharabi  Yaser  Torbosh  Esa 《Wireless Networks》2018,24(7):2723-2734
Wireless Networks - Data dissemination toward static sinks causes the nearby nodes to deplete their energy quicker than the other nodes in the field (i.e., this is referred to as the hotspot...  相似文献   

5.
There is a growing need for enabling reprogramming a working sensor network in unattended area. We prefer to meet the requirements remotely by disseminating parameters instead of collecting all deployed sensors. Identifying the version differences of parameters on different sensor nodes can significantly reduce the communication overhead, because only those out-of-date ones need to be updated. In this paper, we propose BDP, a Bloom filter based data dissemination protocol for wireless sensor networks. Using Bloom filters as compact storage of the version information of data items, BDP efficiently identifies the version differences among data items with the same key and guarantees network-wide consistency with high reliability. Testbed experiment and simulation results demonstrate that BDP outperforms the existing schemes with low energy cost, short propagation delay of updating new items, and high reliability.  相似文献   

6.
7.
Wireless Networks - In a wireless sensor network, one of the most important constraints on sensor nodes is their power source, which is a battery. Sensor nodes carry a limited and generally...  相似文献   

8.
Wireless sensor networks (WSNs) are appealing in obtaining fine-granular observations about the physical world. Due to the fact that WSNs are composed of a large number of low-cost and energy-constrained sensor nodes, along with the notorious time-varying and error-prone nature of wireless links, scalable, robust and energy-efficient data dissemination techniques are needed for the emerging WSN applications such as environment monitoring and surveillance. In this paper, we examine this emerging field from the point of view of supply chain management and propose a hybrid data dissemination framework for WSNs. In particular, for each sensing task, the whole sensor field is conceptually partitioned into several functional regions based on the supply chain management methodology. Different routing schemes are applied to different regions in order to provide better performance in terms of reliability and energy consumption. For this purpose, we also propose a novel zone flooding scheme, essentially a combination of conventional geometric routing and flooding techniques. Our hybrid data dissemination framework features low overhead, high reliability, good scalability and flexibility, and preferable energy efficiency. Detailed simulation studies are carried out to validate the effectiveness and efficiency of our scheme.  相似文献   

9.
To reduce the energy cost of wireless sensor networks (WSNs), the duty cycle (i.e., periodic wake-up and sleep) concept has been used in several medium access control (MAC) protocols. Although these protocols are energy efficient, they are primarily designed for low-traffic environments and therefore sacrifice delay in order to maximize energy conservation. However, many applications having both low and high traffic demand a duty cycle MAC that is able to achieve better energy utilization with minimum energy loss ensuring delay optimization for timely and effective actions. In this paper, nW-MAC is proposed; this is an asynchronously scheduled and multiple wake-up provisioned duty cycle MAC protocol for WSNs. The nW-MAC employs an asynchronous rendezvous schedule selection technique to provision a maximum of n wake-ups in the operational cycle of a receiver. The proposed MAC is suitable to perform in both low- and high-traffic applications using a reception window-based medium access with a specific RxOp. Furthermore, per cycle multiple wake-up concept ensures optimum energy consumption and delay maintaining a higher throughput, as compare to existing mechanisms. Through analysis and simulations, we have quantified the energy-delay performance and obtained results that expose the effectiveness of nW-MAC.  相似文献   

10.
Optimized routing (from source to sink) in wireless sensor networks (WSN) constitutes one of the key design issues in prolonging the lifetime of battery‐limited sensor nodes. In this paper, we explore this optimization problem by considering different cost functions such as distance, remaining battery power, and link usage in selecting the next hop node among multiple candidates. Optimized selection is carried out through fuzzy inference system (FIS). Two differing algorithms are presented, namely optimized forwarding by fuzzy inference systems (OFFIS), and two‐layer OFFIS (2L‐OFFIS), that have been developed for flat and hierarchical networks, respectively. The proposed algorithms are compared with popular routing protocols that are considered as the closest counterparts such as minimum transmit energy (MTE) and low energy adaptive clustering hierarchy (LEACH). Simulation results demonstrate the superiority of the proposed algorithms in extending the WSN lifetime. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
In wireless sensor networks, efficiently disseminating data from a dynamic source to multiple mobile sinks is important for the applications such as mobile target detection and tracking. The tree-based multicasting scheme can be used. However, because of the short communication range of each sensor node and the frequent movement of sources and sinks, a sink may fail to receive data due to broken paths, and the tree should be frequently reconfigured to reconnect sources and sinks. To address the problem, we propose a dynamic proxy tree-based framework in this paper. A big challenge in implementing the framework is how to efficiently reconfigure the proxy tree as sources and sinks change. We model the problem as on-line constructing a minimum Steiner tree in an Euclidean plane, and propose centralized schemes to solve it. Considering the strict energy constraints in wireless sensor networks, we further propose two distributed on-line schemes, the shortest path-based (SP) scheme and the spanning range-based (SR) scheme. Extensive simulations are conducted to evaluate the schemes. The results show that the distributed schemes have similar performance as the centralized ones, and among the distributed schemes, the SR scheme outperforms the SP scheme.  相似文献   

12.
Being a pivotal resource, conservation of energy has been considered as the most striking issue in the wireless sensor network research. Several works have been performed in the last years to devise duty cycle based MAC protocols which optimize energy conservation emphasizing low traffic load scenario. In contrast, considering the high traffic situation, another research trend has been continuing to optimize both energy efficiency and channel utilization employing rate and congestion control at the MAC layer. In this paper, we propose A Load-aware Energy-efficient and Throughput-maximized Asynchronous Duty Cycle MAC (LET-MAC) protocol for wireless sensor networks to provide an integrated solution at the MAC layer considering both the low-and high-traffic scenario. Through extensive simulation using ns-2, we have evaluated the performance of LET-MAC. LET-MAC achieves significant energy conservation during low traffic load (i.e., no event), compared to the prior asynchronous protocol, RI-MAC, as well as attains optimal throughput through maximizing the channel utilization and maintains lower delay in regard to the CSMA/CA-like protocol during a high volume of traffic (i.e., when an event occurs).  相似文献   

13.
In this paper, an Adaptive-Weighted Time-Dimensional and Space-Dimensional (AWTDSD) data aggregation algorithm for a clustered sensor network is proposed for prolonging the lifetime of the network as well as improving the accuracy of the data gathered in the network. AWTDSD contains three phases: (1) the time-dimensional aggregation phase for eliminating the data redundancy; (2) the adaptive-weighted aggregation phase for further aggregating the data as well as improving the accuracy of the aggregated data; and (3) the space-dimensional aggregation phase for reducing the size and the amount of the data transmission to the base station. AWTDSD utilizes the correlations between the sensed data for reducing the data transmission and increasing the data accuracy as well. Experimental result shows that AWTDSD can not only save almost a half of the total energy consumption but also greatly increase the accuracy of the data monitored by the sensors in the clustered network.  相似文献   

14.
低占空比(low duty cycle,LDC)无线传感器网络邻居发现算法是当前无线传感器网络领域的研究热点之一。当前LDC无线传感器网络的邻居发现算法大致可分为同步邻居发现算法和异步邻居发现算法,其中异步发现算法又可分为基于法定人数的调度算法(Grid quorum和 U-connect)和基于中国剩余定理的调度方法(Disco算法)。针对发现延迟和能量消耗,通过仿真实验对当前LDC无线传感器网络邻居发现领域里的典型算法进行了对比分析,在此基础上得出LDC无线传感器网络邻居发现算法新的研究方向。  相似文献   

15.
针对分簇的水声传感网,提出了一种基于时分多址(TDMA)的MAC层协议——Cluster-TDMA。该协议主要由规划阶段和传输阶段组成。规划阶段,首先由网关节点规划能造成簇间干扰的子节点的传输,其次由各簇头节点分别规划本簇内其他子节点的传输;传输阶段,子节点根据规划表周期性地向簇头节点发送数据,这些数据最终汇聚到网关节点。该协议简单有效地解决了引起簇间干扰子结点的传输规划问题。C++仿真实验表明,该协议具有良好的吞吐率和能量效率性能。  相似文献   

16.
低占空比、低碰撞的异步无线传感器网络MAC协议   总被引:1,自引:0,他引:1  
提高信道监听质量是降低能量消耗和提高通信效率的有效方法。提出了一种低占空比、低碰撞的PB-MAC(predict-base MAC)协议。通过发送节点精确预测接收节点的唤醒时间,降低占空比;采用基于预测的重建连接机制和数据重传机制,有效地避免碰撞和实现高效重传。OMNet++仿真实验结果表明:在50节点随机网络中,PB-MAC的平均占空比、发送消息耗能和平均碰撞次数分别比RI-MAC少68.60%、24.75%、68.05%,比X-MAC少64.39%、64.05%、70.54%。同时,在网格网络中PB-MAC的性能也优于RI-MAC和X-MAC。  相似文献   

17.
Wireless Sensor Networks nowadays find wide variety of applications especially in real time. Innovative methods of energy efficient protocols and transmission reduction techniques keep improving to enhance the lifetime of the sensor nodes as they are powered by non-rechargeable batteries. Multi hop transmission and data aggregation are major techniques to reduce the power spent by the sensor node. In this paper, we propose a new ribbon structure for the existing multi hop WSN topologies with modified media access control mechanism called co-operative MAC. The ribbon structure is proposed to reap benefits of PEGASIS and APTEEN protocols. The low power consumption as in PEGASIS is maintained but the number of data packets transmitted is reduced by half. In the proposed scheme, only one of the two nodes along the parallel path involves in data transmission alternating roles in every cycle of aggregation. However, for values sensed above threshold, the inactive node interferes with normal cycle and gets its data transmitted to the sink node. This algorithm is compared with cluster based and chain based protocols and the simulation results show significant energy savings.  相似文献   

18.

In wireless sensor networks, sensors at different locations in the field use different energy levels to propagate sensing data back to the sink or base station. This causes unbalanced energy usage among sensors and also lowers the network lifetime. Currently there are several techniques to mitigate this problem, such as deploying multiple sinks, adding more sensors on heavy traffic areas, or managing the size of clusters depending on the distance from sensor to sink. In this paper, we propose a distributed algorithm and protocol called Multipath Energy Balancing (MEB) to mitigate unbalanced energy usage in clustered wireless sensor networks using multi-path and multi-hop, with a transmission power control approach. The network field is divided into regions, where the ratio of inter-region transmission traffic from all cluster head sensors in one region to other cluster head sensors in the two regions in front can be pre-computed and pre-programmed into the sensors to ease sensor deployment. To further prolong network lifetime, we also present a simple heuristic algorithm to procrastinate cluster formation and routing. Simulation results show that MEB can balance energy much better than Energy-efficient Clustering (EC) and Balancing Energy Consumption (BEC) solutions. It also has a longer network lifetime than EC and BEC protocols, especially when the required cluster size is small. Procrastinating cluster formation and routing also can further improve the network lifetime.

  相似文献   

19.
Power efficiency and coverage preservation are two important performance metrics for a wireless sensor network. However, there is scarcely any protocol to consider them at the same time. In this paper, we propose a flow-balanced routing (FBR) protocol for multi-hop clustered wireless sensor networks that attempts to achieve both power efficiency and coverage preservation. The proposed protocol consists of four algorithms, one each for network clustering, multi-hop backbone construction, flow-balanced transmission, and rerouting. The proposed clustering algorithm groups several sensors into one cluster on the basis of overlapping degrees of sensors. The backbone construction algorithm constructs a novel multi-level backbone, which is not necessarily a tree, using the cluster heads and the sink. Furthermore, the flow-balanced routing algorithm assigns the transferred data over multiple paths from the sensors to the sink in order to equalize the power consumption of sensors. Lastly, the rerouting algorithm reconstructs the network topology only in a place where a head drops out from the backbone due to the head running out of its energy. Two metrics called the network lifetime and the coverage lifetime are used to evaluate the performance of FBR protocol in comparison with previous ones. The simulation results show that FBR yields both much longer lifetime and better coverage preservation than previous protocols. For example, FBR yields more than twice network lifetime and better coverage preservation than a previous efficient protocol, called the coverage-preserving clustering protocol (CPCP) [18], when the first sensor dies and the network coverage is kept at 100%, respectively.  相似文献   

20.
On the lifetime of wireless sensor networks   总被引:5,自引:0,他引:5  
We derive a general formula for the lifetime-of wireless sensor networks which holds independently of the underlying network model including network architecture and protocol, data collection initiation, lifetime definition, channel fading characteristics, and energy consumption model. This formula identifies two key parameters at the physical layer that affect the network lifetime: the channel state and the residual energy of sensors. As a result, it provides not only a gauge for performance evaluation of sensor networks but also a guideline for the design of network protocols. Based on this formula, we propose a medium access control protocol that exploits both the channel state information and the residual energy information of individual sensors. Referred to as the max-min approach, this protocol maximizes the minimum residual energy across the network in each data collection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号