首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Bala  Indu  Bhamrah  Manjit Singh  Singh  Ghanshyam 《Wireless Networks》2019,25(3):1047-1056

In this paper, we have investigated the outage capacity of secondary user for opportunistic spectrum sharing under the joint peak and average received power constraints for Rayleigh fading environment. Under this communication scenario, on detecting the licensed primary user inactive, the secondary unlicensed users transmit data/information in the licensed frequency band such that no or minimum interference may be experienced by the primary user. The soft sensing information (SSI) and secondary user’s channel state information is used to obtain the closed form expressions for the ergodic and outage capacity using truncated channel inversion with fixed rate technique under the joint peak and average received power constraints. Numerically simulated results are provided to demonstrate the improvement in outage capacity of secondary user under the proposed spectrum sharing scheme. Moreover, the proposed scheme is also compared with other conventional spectrum sharing schemes to illustrate the benefits of SSI and received power constraints on the outage capacity of secondary user.

  相似文献   

2.

In this paper, the channel capacity of secondary user is investigated for opportunistic spectrum sharing with primary user in a Rayleigh fading environment. In the proposed communication scenario, on finding transmission opportunities in licensed band, secondary user utilizes the band as long as the interference power inflicted on primary receiver is below the predefined threshold, and adjusts its transmission power and data rate based on the sensing information available from spectrum sensor. In this context, two different adaptation schemes namely adaptive transmission power scheme and adaptive rate and transmission power scheme are investigated under joint peak and average received power constraints at primary receiver for multilevel quadrature amplitude modulation format. The closed form expressions are derived for the ergodic channel capacities of these schemes and numerical results are presented to validate the theoretical results. Moreover, a comparison between channel capacities is given to illustrate the benefit of using soft sensing information under said constraints.

  相似文献   

3.
The two main constraints on the transmit power allocation of the secondary service in a spectrum sharing scheme are the received interference threshold at the primary receiver, and the maximum transmit power of the secondary user. We obtain a critical system parameter which relates these two constraints and enables the system designer to eliminate the interference threshold constraint by adjusting the maximum transmit power of the secondary users. Eliminating the interference threshold constraint significantly reduces the system complexity by making the power allocation of the secondary service independent from the channel state information between the secondary transmitter and the primary receiver; thus removes the need for signaling between primary and secondary systems.  相似文献   

4.
Cognitive radio is able to share the spectrum with primary licensed user, which greatly improves the spectrum efficiency. We study the optimal power allocation for cognitive radio to maximize its ergodic capacity under interference outage constraint. An optimal power allocation scheme for the secondary user with complete channel state information is proposed and its approximation is presented in closed form in Rayleigh fading channels. When the complete channel state information is not available, a more practical transmitter-side joint access ratio and transmit power constraint is proposed. The new constraint guarantees the same impact on interference outage probability at primary user receiver. Both the optimal power allocation and transmit rate under the new constraint are presented in closed form. Simulation results evaluate the performance of proposed power allocation schemes and verify our analysis.  相似文献   

5.
Efficient radio spectrum utilization can be improved using cognitive radio technology. In this work, we consider a spectrum underlay cognitive radio system operating in a fading environment. We propose an efficient power control scheme that maximizes the effective capacity of the secondary user, provisioning quality of service while on the same time the communication of the primary user is guaranteed through interference constraints. The specific power allocation scheme uses a policy in which the outage events of the primary user are exploited leading to a significant increase of the secondary user’s effective capacity. Moreover, the interference of the primary link to the secondary is taken into account so as to study a more realistic scenario. In order to safeguard primary user’s communication, two types of restrictions are considered: the traditional interference power constraint and the proposed inverse signal to interference plus noise ratio constraint. Different scenarios depending on the nature of the constraints (peak/average) are studied and their impact on the performance of the primary and secondary users is investigated. The superiority of the proposed schemes is demonstrated through their comparison with two reference power control schemes. Finally, numerical calculations, validated with simulation results, confirm the theoretical analysis and evaluate the performance of the proposed scheme for all the different scenarios.  相似文献   

6.
Consider a multi‐user underlay cognitive network where multiple cognitive users concurrently share the spectrum with a primary network with multiple users. The channel between the secondary network is assumed to have independent but not identical Nakagami‐m fading. The interference channel between the secondary users (SUs) and the primary users is assumed to have Rayleigh fading. A power allocation based on the instantaneous channel state information is derived when a peak interference power constraint is imposed on the secondary network in addition to the limited peak transmit power of each SU. The uplink scenario is considered where a single SU is selected for transmission. This opportunistic selection depends on the transmission channel power gain and the interference channel power gain as well as the power allocation policy adopted at the users. Exact closed form expressions for the moment‐generating function, outage performance, symbol error rate performance, and the ergodic capacity are derived. Numerical results corroborate the derived analytical results. The performance is also studied in the asymptotic regimes, and the generalized diversity gain of this scheduling scheme is derived. It is shown that when the interference channel is deeply faded and the peak transmit power constraint is relaxed, the scheduling scheme achieves full diversity and that increasing the number of primary users does not impact the diversity order. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
针对基于无人机中继的星地认知网络,提出了两种波束成形(beamforming, BF)算法,通过对各种干扰进行抑制,实现系统间的频谱共享。具体而言,在基于无人机中继的卫星网络作为次级网络、地面网络作为主网络的情况下,以无人机最大发射功率和主用户所受干扰为约束条件,建立次级用户信干噪比最大化准则的优化问题;接下来在已知次级用户统计信道状态信息的条件下,提出一种基于迭代的BF算法对优化问题进行求解;更进一步,为了降低迭代算法的实现复杂度,提出了一种基于迫零的BF算法。最后,计算机仿真验证了所提两种波束成形方案的正确性与有效性。  相似文献   

8.
This paper investigates the capacity and energy efficiency of spectrum sharing systems with opportunistic user selection where a secondary network utilizes spectrum bands licensed to a primary network under interference regulation. In spectrum sharing systems, secondary users consume a fraction of their resources in sensing the channels to the primary users to comply with the interference constraints. Although more resources for sensing improve reliability and performance, the throughput loss due to time overhead and energy loss due to power overhead should be properly incorporated in performance evaluation. In this context, we define and derive a new metric ? average capacity normalized by the total energy consumption ? reflecting time and power overhead for spectrum sensing. Based on the developed framework, the optimal normalizedcapacity is investigated. We also propose a simple and practical suboptimal best-n scheme motivated by the infeasibility and high computational complexity of the optimal strategy, where n denotes the number of sensing secondary users. Our analytical and simulation results show that the proposed best-1 scheme is an energy-efficient technique with near optimality in terms of the capacity normalized by the energy consumption.  相似文献   

9.
This article investigates a multiuser cognitive environment where secondary users compete to communicate over a channel licensed to a primary user using spectrum sharing. In this environment, both the primary and secondary users transmit to the same receiver unit, and the transmission power of the scheduled secondary user should satisfy the outage probability requirement of the primary user. Secondary users are ranked according to their channel strength, and performance measures are derived as a function of a generic channel rank. Bit error rate, channel capacity, and generated interference are investigated as performance measures. In addition, the performance of the proportional fair, random selection, and round-robin scheduling algorithms are investigated. Numerical results are presented to verify the theoretical analysis and investigate the effects the parameters of the communication environment have on the performance measures and the transmission power of the cognitive users.  相似文献   

10.
This paper investigates the power allocation problem in decode‐and‐forward cognitive dual‐hop systems over Rayleigh fading channels. In order to optimize the performance of the secondary network in terms of power consumption, an outage‐constrained power allocation scheme is proposed. The secondary nodes adjust their transmit power subject to an average interference constraint at the primary receiver and an outage probability constraint for the secondary receivers while having only statistical channel knowledge with respect to the primary nodes. We compare this approach with a power allocation scheme based on instantaneous channel state information under a peak interference constraint. Analytical and numerical results show that the proposed approach, without requiring the constant interchange of channel state information, can achieve a similar performance in terms of outage probability as that of power allocation based on instantaneous channel knowledge. Moreover, the transmit power allocated by the proposed approach is considerably smaller than the power allocated by the method based on instantaneous channel knowledge in more than 50% of the time. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
Spectrum sharing cognitive radio aims to improve the spectrum efficiency via sharing the spectrum band licensed to the primary user (PU) with the secondary user (SU) concurrently provided that the interference caused by the SU to the PU is limited. The channel state information (CSI) between the secondary transmitter (STx) and the primary receiver (PRx) is used by the STx to calculate the appropriate transmit power to limit the interference. We assume that this CSI is not only having channel estimation errors but also outdated due to feedback delay, which is different from existing studies. We derive closed-form expressions for the ergodic capacities of the SU with this imperfect CSI under the average interference power (AIP) constraint and the peak interference power (PIP) constraint. Illustrative results are presented to show the effects of the imperfect CSI. It is shown that the ergodic capacity of the SU is robust to the channel estimation errors and feedback delay under high feedback delay. It is also shown that decreasing the distance between STx and secondary receiver (SRx) or increasing the distance between STx and PRx can mitigate the impact of the imperfect CSI and significantly increase the ergodic capacity of the SU.  相似文献   

12.
In dynamically changing environments, the spectrum-sharing method is a promising method to address the spectrum underutilization problem for cognitive radio (CR) systems. This paper investigates the capacity of cognitive radio multiple-access channel (CR-MAC) over a dynamic fading environment. Multiple secondary users (SUs) transmit to the secondary base station under the transmit power (TP) and interference temperature (IT) at the primary base station constraints. In order to perform a general analysis, a theoretical dynamic fading model termed hyper-fading model, which is suitable to the dynamic nature of cognitive radio channel, is considered. The optimal power allocation method is employed to maximize the capacity of CR-MAC for hyper-fading channel with TP and IT constraints and full channel side information. Through the numerical simulations, the capacity of the hyper-fading channels are compared with that of other channel fading models such as Rayleigh, Nakagami-2, and with an additive white Gaussian noise channel. Additionally, the impacts of the number of SUs on capacity is investigated.  相似文献   

13.
Recently, cooperative relaying techniques have been integrated into spectrum‐sharing systems in an effort to yield higher spectral efficiency. Many investigations on such systems have assumed that the channel state information between the secondary transmitter and primary receiver used to calculate the maximum allowable transmit secondary user transmit power to limit the interference is known to be perfect. However, because of feedback delay from the primary receiver or the time‐varying properties of the channel, the channel information may be outdated, which is an important scenario to cognitive radio systems. In this paper, we investigate the impact of outdated channel state information for relay selection on the performance of partial relay selection with amplify and forward in underlay spectrum‐sharing systems. We begin by deriving a closed‐form expression for the outage probability of the secondary network in a Rayleigh fading channel along with peak received interference power constraint and maximum allowable secondary user transmit power. We also provide a closed‐form expression for the average bit‐error rate of the underlying system. Moreover, we present asymptotic expressions for both the outage probability and average bit‐error rate in the high signal‐to‐noise ratio regime that reveal practical insights on the achievable diversity gain. Finally, we confirm our results through comparisons with computer simulations. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
This paper studies the case of an overlay cognitive radio network where the primary user leases spectral resources to the secondary user in exchange for cooperation, considering that both type of users have specific quality of service requirements. We investigate the problem of joint power and time allocation for the secondary access during the cooperative phase, with a view to optimizing the effective capacity of the primary user given an average energy constraint for the secondary user. Afterwards, the optimal power allocation of the secondary user for its own transmission phase is investigated in order to maximize the effective capacity of the secondary link. The proposed joint power and time allocation mechanism is compared with an optimal time/constant power allocation scheme and a less sophisticated baseline allocation scheme, i.e. power allocation under constant time and its superiority is proven for various network parameters. The reference model of one primary–one secondary user is extended to a general multi user cognitive radio network through the proposed pairing mechanism based on matching theory. Particularly, considering the remarks of the reference scenario, we propose two different matching schemes (with/without consideration of primary users’ quality of service requirements) and we confirm their superiority compared to other matching mechanisms.  相似文献   

15.
针对“先听后传”的机会频谱接入中认知用户的信道选择问题,本文提出了一种基于Q学习的信道选择算法。在非理想感知的条件下,通过建立认知用户的信道选择模型并设计恰当的奖励函数,使智能体能够与未知环境不断交互和学习,进而选择长期累积回报最大的信道接入。在学习过程中,本文引入了Boltzmann实验策略,运用模拟退火思想实现了资源探索与资源利用之间的折衷。仿真结果表明,所提算法能够在未知环境先验知识条件下可以快速选择性能较好的信道接入,有效提高认知用户的接入吞吐量和系统的平均容量。   相似文献   

16.
Resource allocation under spectrum sensing based dynamic spectrum sharing strategy is a critically important issue for cognitive radio networks (CRNs), because they need to not only satisfy the interference constraint caused to the primary users (PUs), but also meet the quality-of-service (QoS) requirements for the secondary users (SUs). In this paper, we develop the optimal spectrum sensing based resource allocation scheme for the delay QoS constrained CRNs. Specifically, we aim at maximizing the maximum constant arrival rate of the SU that can be supported by the time-varying service process subject to the given statistical delay QoS constraint. In our derived power allocation scheme, not only the average transmit and interference power constraints are considered, but also the impact of the PUs?? transmission to the CRNs and the PUs?? spectrum-occupancy probability are taken into consideration. Moreover, the spectrum sensing errors are also taken into consideration. Simulation results show that, (1) the effective capacity of the secondary link decreases when the statistical delay QoS constraint becomes stringent; (2) given the QoS constraint, the effective capacity of the secondary link varies with the interference power constraint and the SNR of the primary link.  相似文献   

17.
This paper considers a cognitive radio network where a secondary user (SU) coexists with a primary user (PU). The interference outage constraint is applied to protect the primary transmission. The power allocation problem to jointly maximize the ergodic capacity and minimize the outage probability of the SU, subject to the average transmit power constraint and the interference outage constraint, is studied. Suppose that the perfect knowledge of the instantaneous channel state information (CSI) of the interference link between the SU transmitter and the PU receiver is available at the SU, the optimal power allocation strategy is then proposed. Additionally, to manage more practical situations, we further assume only the interference link channel distribution is known and derive the corresponding optimal power allocation strategy. Extensive simulation results are given to verify the effectiveness of the proposed strategies. It is shown that the proposed strategies achieve high ergodic capacity and low outage probability simultaneously, whereas optimizing the ergodic capacity (or outage probability) only leads to much higher outage probability (or lower ergodic capacity). It is also shown that the SU performance is not degraded due to partial knowledge of the interference link CSI if tight transmit power constraint is applied.  相似文献   

18.
高欢芹  宋荣方 《通信学报》2014,35(4):12-111
摘 要:提出一种频谱共享方案,该方案适用于同时存在多个主用户和一对次用户的场景。各主用户依据接收机反馈的有限信道质量信息(CQI, channel quality information)分配发送功率及传输速率。次用户根据偷听到的主系统CQI有限反馈,以适当的功率及速率接入信道。次用户接入信道的行为对各主用户造成一定干扰,以致主系统传输速率遭受一定损失。本文在主系统速率损失约束条件下,研究得出了使次系统吞吐量最大化的次用户发送功率及传输速率最佳分配方案。数值结果表明,对于每个主用户仅需反馈3-4个量化比特,次系统的有效吞吐量就可堪比于主次发射端均拥有主系统链路完整CQI的情况。仿真结果显示,所提出的频谱共享方案能够满足主系统速率损失约束。  相似文献   

19.
In this paper the effect of the opportunistic spectrum access on the spectrum utilization is studied in terms of the secondary network capacity measured at the secondary receiver. A mathematical model is developed to represent the secondary network capacity in Rayleigh fading channel. An exact analytical solution for the capacity is derived for both sensing and accessing fading channels. A numerical evaluation of the channel capacity is presented for different channel sensing and accessing schemes. The effects of detection and accessing channel parameters on the capacity are investigated. The analytical results that are validated by substantial simulations showed how the utilization of the network can be increased significantly by the suggested opportunistic spectrum accessing technique. It was found that when having a good sensing system with a high secondary user signal to noise ratio, accessing the licensed band increases and drives the spectrum utilization to its maximum. In addition, this work shows how the capacity can be positively affected by three factors: the secondary accessing channel, the primary user interference and the desired quality of service (QoS) of primary user. The awareness of a proper sensing scheme can maximize the spectrum utilization without degrading the QoS of primary users.  相似文献   

20.
麦磊鑫  秦晓卫  戴旭初 《信号处理》2011,27(12):1904-1913
认知无线电系统中,通过频谱检测所获得的主用户位置信息和信道使用状态信息分别反映空间域和时间域的频谱使用情况,其准确性关系到次用户伺机频谱接入的效率。本文研究空间和时间联合频谱检测问题,将其建模为主用户位置参数和信道使用状态的联合估计问题,提出了一种基于粒子滤波的协作式空时联合频谱检测方法,主要思想是采用离散随机测度逼近位置参数和信道状态的联合后验概率分布函数,根据该分布估计出主用户位置和信道状态。同时,该方法结合由估计得到的空间和时间信息,自适应选择靠近主用户且对称分布的次用户参与协作检测,增加各次用户提供信息的有效性,从而提高估计的准确性;最后,通过仿真验证了方法的有效性。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号