首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wireless sensor networks consist of small battery powered devices with limited energy resources. Once deployed, the small sensor nodes are usually inaccessible to the user, and thus replacement of the energy source is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the network. Several network layer protocols have been proposed to improve the effective lifetime of a network with a limited energy supply. In this article we propose a centralized routing protocol called base-station controlled dynamic clustering protocol (BCDCP), which distributes the energy dissipation evenly among all sensor nodes to improve network lifetime and average energy savings. The performance of BCDCP is then compared to clustering-based schemes such as low-energy adaptive clustering hierarchy (LEACH), LEACH-centralized (LEACH-C), and power-efficient gathering in sensor information systems (PEGASIS). Simulation results show that BCDCP reduces overall energy consumption and improves network lifetime over its comparatives.  相似文献   

2.
Reducing the energy consumption of sensor nodes and prolonging the life of the network is the central topic in the research of wireless sensor network (WSN) protocol. The low-energy adaptive clustering hierarchy (LEACH) is one of the hierarchical routing protocols designed for communication in WSNs. LEACH is clustering based protocol that utilizes randomized rotation of local cluster-heads to evenly distribute the energy load among the sensors in the network. But LEACH is based on the assumption that each sensor nodes contain equal amount of energy which is not valid in real scenarios. A developed routing protocol named as DL-LEACH is proposed. The DL-LEACH protocol cluster head election considers residual energy of nodes, distance from node to the base station and neighbor nodes, which makes cluster head election reasonable and node energy consumption balance. The simulation results of proposed protocols are compared for its network life time in MATLAB with LEACH protocol. The DL-LEACH is prolong the network life cycle by 75 % than LEACH.  相似文献   

3.
Energy consumption of sensor nodes is one of the crucial issues in prolonging the lifetime of wireless sensor networks. One of the methods that can improve the utilization of sensor nodes batteries is the clustering method. In this paper, we propose a green clustering protocol for mobile sensor networks using particle swarm optimization (PSO) algorithm. We define a new fitness function that can optimize the energy consumption of the whole network and minimize the relative distance between cluster heads and their respective member nodes. We also take into account the mobility factor when defining the cluster membership, so that the sensor nodes can join the cluster that has the similar mobility pattern. The performance of the proposed protocol is compared with well-known clustering protocols developed for wireless sensor networks such as LEACH (low-energy adaptive clustering hierarchy) and protocols designed for sensor networks with mobile nodes called CM-IR (clustering mobility-invalid round). In addition, we also modify the improved version of LEACH called MLEACH-C, so that it is applicable to the mobile sensor nodes environment. Simulation results demonstrate that the proposed protocol using PSO algorithm can improve the energy consumption of the network, achieve better network lifetime, and increase the data delivered at the base station.  相似文献   

4.
Wireless sensor network (WSN) consists of densely distributed nodes that are deployed to observe and react to events within the sensor field. In WSNs, energy management and network lifetime optimization are major issues in the designing of cluster-based routing protocols. Clustering is an efficient data gathering technique that effectively reduces the energy consumption by organizing nodes into groups. However, in clustering protocols, cluster heads (CHs) bear additional load for coordinating various activities within the cluster. Improper selection of CHs causes increased energy consumption and also degrades the performance of WSN. Therefore, proper CH selection and their load balancing using efficient routing protocol is a critical aspect for long run operation of WSN. Clustering a network with proper load balancing is an NP-hard problem. To solve such problems having vast search area, optimization algorithm is the preeminent possible solution. Spider monkey optimization (SMO) is a relatively new nature inspired evolutionary algorithm based on the foraging behaviour of spider monkeys. It has proved its worth for benchmark functions optimization and antenna design problems. In this paper, SMO based threshold-sensitive energy-efficient clustering protocol is proposed to prolong network lifetime with an intend to extend the stability period of the network. Dual-hop communication between CHs and BS is utilized to achieve load balancing of distant CHs and energy minimization. The results demonstrate that the proposed protocol significantly outperforms existing protocols in terms of energy consumption, system lifetime and stability period.  相似文献   

5.
Wireless sensor networks (WSNs) are composed of many low cost, low power devices with sensing, local processing and wireless communication capabilities. Recent advances in wireless networks have led to many new protocols specifically designed for WSNs where energy awareness is an essential consideration. Most of the attention, however, has been given to the routing protocols since they might differ depending on the application and network architecture. Minimizing energy dissipation and maximizing network lifetime are important issues in the design of routing protocols for WSNs. In this paper, the low-energy adaptive clustering hierarchy (LEACH) routing protocol is considered and improved. We propose a clustering routing protocol named intra-balanced LEACH (IBLEACH), which extends LEACH protocol by balancing the energy consumption in the network. The simulation results show that IBLEACH outperforms LEACH and the existing improvements of LEACH in terms of network lifetime and energy consumption minimization.  相似文献   

6.
Clustering technique in wireless sensor networks incorporate proper utilization of the limited energy resources of the deployed sensor nodes with the highest residual energy that can be used to gather data and send the information. However, the problem of unbalanced energy consumption exists in a particular cluster node in the network. Some more powerful nodes act as cluster head to control sensor network operation when the network is organized into heterogeneous clusters. It is important to assume that energy consumption of these cluster head nodes is balanced. Often the network is organized into clusters of equal size where cluster head nodes bear unequal loads. Instead in this paper, we proposed a new protocol low-energy adaptive unequal clustering protocol using Fuzzy c-means in wireless sensor networks (LAUCF), an unequal clustering size model for the organization of network based on Fuzzy c-means (FCM) clustering algorithm, which can lead to more uniform energy dissipation among the cluster head nodes, thus increasing network lifetime. A heuristic comparison between our proposed protocol LAUCF and other different energy-aware protocol including low energy adaptive clustering hierarchy (LEACH) has been carried out. Simulation result shows that our proposed heterogeneous clustering approach using FCM protocol is more effective in prolonging the network lifetime compared with LEACH and other protocol for long run.  相似文献   

7.
In wireless sensor network, a large number of sensor nodes are distributed to cover a certain area. Sensor node is little in size with restricted processing power, memory, and limited battery life. Because of restricted battery power, wireless sensor network needs to broaden the system lifetime by reducing the energy consumption. A clustering‐based protocols adapt the use of energy by giving a balance to all nodes to become a cluster head. In this paper, we concentrate on a recent hierarchical routing protocols, which are depending on LEACH protocol to enhance its performance and increase the lifetime of wireless sensor network. So our enhanced protocol called Node Ranked–LEACH is proposed. Our proposed protocol improves the total network lifetime based on node rank algorithm. Node rank algorithm depends on both path cost and number of links between nodes to select the cluster head of each cluster. This enhancement reflects the real weight of specific node to success and can be represented as a cluster head. The proposed algorithm overcomes the random process selection, which leads to unexpected fail for some cluster heads in other LEACH versions, and it gives a good performance in the network lifetime and energy consumption comparing with previous version of LEACH protocols.  相似文献   

8.
In real life scenario for wireless sensor networks (WSNs), energy heterogeneity among the sensor nodes due to uneven terrain, connectivity failure, and packet dropping is a crucial factor that triggered the race for developing robust and reliable routing protocols. Prolonging the time interval before the death of the first sensor node, viz. the stability period, is critical for many applications where the feedback from the WSN must be reliable. Although Low Energy Adaptive Clustering Hierarchy (LEACH) and LEACH-like protocols are fundamental and popular clustering protocols to manage the system’s energy and thus to prolong the lifespan of the network, they assume a near to a perfect energy homogeneous system where a node failure, drainage and re-energizing are typically not considered. More recent protocols like Stable Election Protocol (SEP) considers the reverse, i.e., energy heterogeneity, and properly utilizes the extra energy to guarantee a stable and reliable performance of the network system. While paradigms of computational intelligence such as evolutionary algorithms (EAs) have attracted significant attention in recent years to address various WSN’s challenges such as nodes deployment and localization, data fusion and aggregation, security and routing, they did not (to the best of our knowledge) explore the possibility of maintaining heterogeneous-aware energy consumption to guarantee a reliable and robust routing protocol design. By this, a new protocol named stable-aware evolutionary routing protocol (SAERP), is proposed in this paper to ensure maximum stability and minimum instability periods for both homogeneous/heterogeneous WSNs. SAERP introduces an evolutionary modeling, where the cluster head election probability becomes more efficient, to well maintain balanced energy consumption in both energy homogeneous and heterogeneous settings. The performance of SAERP over simulation for 90 WSNs is evaluated and compared to well known LEACH and SEP protocols. We found that SAERP is more robust and always ensures longer stability period and shorter instability period.  相似文献   

9.
Wireless sensor networks are composed of a large number of sensor nodes with limited energy resources. Once deployed, the sensor nodes are usually inaccessible to the user, and thus replacement of the energy resource is not feasible. Hence, energy efficiency is a key design issue that needs to be enhanced in order to improve the life span of the entire network. Several routing protocols have been proposed to improve the effective lifetime of the network with limited energy supply. In this paper, we propose routing based on energy–temperature transformation, RETT-gen, a scalable energy-efficient clustering and routing protocol designed for wireless sensor networks. The main goal of RETT-gen is to evenly distribute the energy load among all the sensor nodes in the network so that there are no overly-utilized sensor nodes that will run out of energy before the others. To achieve this goal, RETT-gen uses heat conductivity as a metaphor and uses the heat dissipation difference equations. In RETT-gen, we transform the expected lifetime of each sensor node to an equivalent temperature, and then by using the heat dissipation equations, we find the hottest path for sending data to the base station, which will not always be the shortest path. We evaluate the performance of the RETT-gen protocol via simulations, and compare it to the performance of well-known routing protocols (i.e. LEACH [W. Heinzelman, A. Chandrakasan, H. Balakrishnan, Energy-efficient communication protocol for wireless microsensor networks, in: Proceedings of the 33rd Hawaii International Conference on System Sciences (HICSS’00), 2000.] and EEUC [C. Li, M. Ye, G. Chen, J. Wu, An energy-efficient unequal clustering mechanism for wireless sensor networks, in: Proceedings of the International IEEE Conference on Mobile Adhoc and Sensor Systems (MASS), 2005.]). Simulation results show that by equalizing the sensor nodes energy, RETT-gen insures that the lifetime of the entire sensor network is maximized, the connectivity in a sensor network is maintained for as long as possible, and that the residual energy of the entire network is of the same order.  相似文献   

10.
异构传感器网络是一种能量有限且分布不均衡的网络,负载均衡和能量有效是此网络路由算法的一个挑战。现提出的自组织成簇算法能够有效增加传感器网络的稳定周期,算法基于传感器节点的剩余能量和通讯能耗选择适合的簇头节点。与经典的成簇算法LEACH和SET比较,本算法能够更好实现负载均衡,并极大地提高传感器网络的稳定周期。  相似文献   

11.
Networking together hundreds or thousands of cheap microsensor nodes allows users to accurately monitor a remote environment by intelligently combining the data from the individual nodes. These networks require robust wireless communication protocols that are energy efficient and provide low latency. We develop and analyze low-energy adaptive clustering hierarchy (LEACH), a protocol architecture for microsensor networks that combines the ideas of energy-efficient cluster-based routing and media access together with application-specific data aggregation to achieve good performance in terms of system lifetime, latency, and application-perceived quality. LEACH includes a new, distributed cluster formation technique that enables self-organization of large numbers of nodes, algorithms for adapting clusters and rotating cluster head positions to evenly distribute the energy load among all the nodes, and techniques to enable distributed signal processing to save communication resources. Our results show that LEACH can improve system lifetime by an order of magnitude compared with general-purpose multihop approaches.  相似文献   

12.
The improvement of sensor networks’ lifetime has been a major research challenge in recent years. This is because sensor nodes are battery powered and may be difficult to replace when deployed. Low energy adaptive clustering hierarchical (LEACH) routing protocol was proposed to prolong sensor nodes lifetime by dividing the network into clusters. In each cluster, a cluster head (CH) node receives and aggregates data from other nodes. However, CH nodes in LEACH are randomly elected which leads to a rapid loss of network energy. This energy loss occurs when the CH has a low energy level or when it is far from the BS. LEACH with two level cluster head (LEACH-TLCH) protocol deploys a secondary cluster head (2CH) to relieve the cluster head burden in these circumstances. However, in LEACH-TLCH the optimal distance of CH to base station (BS), and the choicest CH energy level for the 2CH to be deployed for achieving an optimal network lifetime was not considered. After a survey of related literature, we improved on LEACH-TLCH by investigating the conditions set to deploy the 2CH for an optimal network lifetime. Experiments were conducted to indicate how the 2CH impacts on the network at different CH energy levels and (or) CH distance to BS. This, is referred to as factor-based LEACH (FLEACH). Investigations in FLEACH show that as CHs gets farther from the BS, the use of a 2CH extends the network lifetime. Similarly, an increased lifetime also results as the CH energy decreases when the 2CH is deployed. We further propose FLEACH-E which uses a deterministic CH selection with the deployment of 2CH from the outset of network operation. Results show an improved performance over existing state-of-the-art homogeneous routing protocols.  相似文献   

13.
Wireless sensor networks consist of low cost sensor nodes which have limited power supplies, memory capacity, processing capability and transmission rate. Sensor nodes gather information from the environment and send the collected information to base station with help of a routing cooperation. Because of limited resources in Wireless Sensor Networks, fulfilling these routing operations is a major problem. Routing protocols are used to perform these operations. The most important thing by considering while these protocols are designed is energy efficiency. Because wireless sensor networks are widely used in intelligent systems, the energy efficiency of these networks is very important in IoT. Researchers have proposed several hierarchical routing protocols such as LEACH, PEGASIS, TEEN and APTEEN. In this study, an energy efficient routing protocol is developed which is more efficient than currently avaliable routing protocols. The developed protocol involves mapping of the network, sleep–wake/load balancing, data merge processes. The proposed protocol gives better results than other protocols in number of surviving nodes and amount of energy consumed criterias.  相似文献   

14.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

15.
无线传感器网络采用能量有效方式传输数据对于延长传感器网络寿命十分重要。LEACH是一种基于簇的协议,它采用本地簇头随机轮转机制将能量负载均匀分布到网络中的所有传感器节点,簇头节点将收集到数据进行融合后发送给基站。提出一种改进的方案,采用随机成簇算法让网络中传感器节点成簇,成簇的过程考虑传感器节点剩余能量和簇头与非簇头结点之间的距离。通过分析评价和仿真结果,说明新算法比LEACH更能有效利用能量且发送更多的数据。  相似文献   

16.
朱明  刘漫丹 《电视技术》2016,40(10):71-76
LEACH协议是无线传感器网络中最流行的分簇路由协议之一.针对LEACH算法簇分布不均匀以及网络能耗不均衡等问题提出了一种高效节能多跳路由算法.在簇建立阶段,新算法根据网络模型计算出最优簇头间距值,调整节点通信半径以控制簇的大小,形成合理网络拓扑结构;在数据传输阶段,簇头与基站之间采用多跳的通信方式,降低了节点能耗.在TinyOS操作系统下,使用nesC语言设计实现了LEACH-EEMH算法.基于TOSSIM平台的仿真结果表明,新算法较LEACH算法在均衡网络能耗、延长网络寿命方面具有显著优势.  相似文献   

17.
18.
Balancing the load among sensor nodes is a major challenge for the long run operation of wireless sensor networks. When a sensor node becomes overloaded, the likelihood of higher latency, energy loss, and congestion becomes high. In this paper, we propose an optimal load balanced clustering for hierarchical cluster‐based wireless sensor networks. We formulate the network design problem as mixed‐integer linear programming. Our contribution is 3‐fold: First, we propose an energy aware cluster head selection model for optimal cluster head selection. Then we propose a delay and energy‐aware routing model for optimal inter‐cluster communication. Finally, we propose an equal traffic for energy efficient clustering for optimal load balanced clustering. We consider the worst case scenario, where all nodes have the same capability and where there are no ways to use mobile sinks or add some powerful nodes as gateways. Thus, our models perform load balancing and maximize network lifetime with no need for special node capabilities such as mobility or heterogeneity or pre‐deployment, which would greatly simplify the problem. We show that the proposed models not only increase network lifetime but also minimize latency between sensor nodes. Numerical results show that energy consumption can be effectively balanced among sensor nodes, and stability period can be greatly extended using our models.  相似文献   

19.
DEED:一种无线传感器网络中高效节能的数据通信协议   总被引:18,自引:0,他引:18       下载免费PDF全文
龚海刚  刘明  陈力军  谢立 《电子学报》2005,33(8):1391-1396
无线传感器网络由许多具有低功率无线收发装置的传感器节点组成,能够有效地从不同环境监测收集周边环境信息并传送到远处的基站进行处理.由于传感器节点的电池能量极为有限,因此节点的通信应有效的利用能量,以延长网络的生命周期.LEACH[4]协议是一种典型的能有效延长网络生命周期的节能通信协议.本文提出了一种分布的、高效节能的通信协议DEED,DEED利用了数据聚合技术,以聚类的方式组织节点,聚类首领在网络中均匀分布并组织成路由树,由根节点与基站直接通信.实验结果显示DEED性能远好于LEACH.  相似文献   

20.
由于无线传感器网络(Wireless Sensor Networks,WSN)中节点能量有限,需要设计能量有效的协议,以延长网络的生存时间。在LEACH路由协议的基础上,综合考虑节点已经充当簇头的次数、剩余能量和地理位置参数来优化簇头的选择机制,提出了LEACH-W路由协议算法。实验结果表明,LEACH-W算法具有更长的网络生命周期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号