首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
One of important issues in wireless sensor networks is how to effectively use the limited node energy to prolong the lifetime of the networks. Clustering is a promising approach in wireless sensor networks, which can increase the network lifetime and scalability. However, in existing clustering algorithms, too heavy burden of cluster heads may lead to rapid death of the sensor nodes. The location of function nodes and the number of the neighbor nodes are also not carefully considered during clustering. In this paper, a multi-factor and distributed clustering routing protocol MFDCRP based on communication nodes is proposed by combining cluster-based routing protocol and multi-hop transmission. Communication nodes are introduced to relay the multi-hop transmission and elect cluster heads in order to ease the overload of cluster heads. The protocol optimizes the election of cluster nodes by combining various factors such as the residual energy of nodes, the distance between cluster heads and the base station, and the number of the neighbor nodes. The local optimal path construction algorithm for multi-hop transmission is also improved. Simulation results show that MFDCRP can effectively save the energy of sensor nodes, balance the network energy distribution, and greatly prolong the network lifetime, compared with the existing protocols.  相似文献   

2.
Clustering has been accepted as one of the most efficient techniques for conserving energy of wireless sensor networks (WSNs). However, in a two-tiered cluster based WSN, cluster heads (CHs) consume more energy due to extra overload for receiving data from their member sensor nodes, aggregating them and transmitting that data to the base station (BS). Therefore, proper selection of CHs and optimal formation of clusters play a crucial role to conserve the energy of sensor nodes for prolonging the lifetime of WSNs. In this paper, we propose an energy efficient CH selection and energy balanced cluster formation algorithms, which are based on novel chemical reaction optimization technique (nCRO), we jointly called these algorithms as novel CRO based energy efficient clustering algorithms (nCRO-ECA). These algorithms are developed with efficient schemes of molecular structure encoding and potential energy functions. For the energy efficiency, we consider various parameters such as intra-cluster distance, sink distance and residual energy of sensor nodes in the CH selection phase. In the cluster formation phase, we consider various distance and energy parameters. The algorithm is tested extensively on various scenarios of WSNs by varying number of sensor nodes and CHs. The results are compared with original CRO based algorithm, namely CRO-ECA and some existing algorithms to demonstrate the superiority of the proposed algorithm in terms of energy consumption, network lifetime, packets received by the BS and convergence rate.  相似文献   

3.
Clustering of nodes is often used in wireless sensor networks to achieve data aggregation and reduce the number of nodes transmitting the data to the sink. This paper proposes a novel dual head static clustering algorithm (DHSCA) to equalise energy consumption by the sensor nodes and increase the wireless sensor network lifetime. Nodes are divided into static clusters based on their location to avoid the overhead of cluster re-formation in dynamic clustering. Two nodes in each cluster, selected on the basis of the their residual energy and their distance from the sink and other nodes in the cluster, are designated as cluster heads, one for data aggregation and the other for data transmission. This reduces energy consumption during intra-cluster and inter-cluster communication. A multi-hop technique avoiding the hot-spot problem is used to transmit the data to the sink. Experiments to observe the energy consumption patterns of the nodes and the fraction of packets successfully delivered using the DHSCA suggest improvements in energy consumption equalisation, which, in turn, enhances the lifetime of the network. The algorithm is shown to outperform all the other static clustering algorithms, while being comparable with the performance of the best dynamic algorithm.  相似文献   

4.
Clustering is an indispensable strategy that helps towards the extension of lifetime of each sensor nodes with energy stability in wireless sensor networks (WSNs). This clustering process aids in sustaining energy efficiency and extended network lifetime in sensitive and critical real-life applications that include landslide monitoring and military applications. The dynamic characteristics of WSNs and several cluster configurations introduce challenge in the process of searching an ideal network structure, a herculean challenge. In this paper, Hybrid Chameleon Search and Remora Optimization Algorithm-based Dynamic Clustering Method (HCSROA) is proposed for dynamic optimization of wireless sensor node clusters. It utilized the global searching process of Chameleon Search Algorithm for selecting potential cluster head (CH) selection with balanced trade-off between intensification and extensification. It determines an ideal dynamic network structure based on factors that include quantity of nodes in the neighborhood, distance to sink, predictable energy utilization rate, and residual energy into account during the formulation of fitness function. It specifically achieved sink node mobility through the integration of the local searching capability of Improved Remora Optimization Algorithm for determining the optimal points of deployment over which the packets can be forwarded from the CH of the cluster to the sink node. This proposed HCSROA scheme compared in contrast to standard methods is identified to greatly prolong network lifetime by 29.21% and maintain energy stability by 25.64% in contrast to baseline protocols taken for investigation.  相似文献   

5.
Energy conserving of sensor nodes is the most crucial issue in the design of wireless sensor networks (WSNs). In a cluster based routing approach, cluster heads (CHs) cooperate with each other to forward their data to the base station (BS) via multi-hop routing. In this process, CHs closer to the BS are burdened with heavier relay traffic and tend to die prematurely which causes network partition is popularly known as a hot spot problem. To mitigate the hot spot problem, in this paper, we propose unequal clustering and routing algorithms based on novel chemical reaction optimization (nCRO) paradigm, we jointly call these algorithms as novel CRO based unequal clustering and routing algorithms (nCRO-UCRA). In clustering, we partition the network into unequal clusters such that smaller size clusters near to the sink and larger size clusters relatively far away from the sink. For this purpose, we develop the CH selection algorithm based on nCRO paradigm and assign the non-cluster head sensor nodes to the CHs based on derived cost function. Then, a routing algorithm is presented which is also based on nCRO based approach. All these algorithms are developed with the efficient schemes of molecular structure encoding and novel potential energy functions. The nCRO-UCRA is simulated extensively on various scenarios of WSNs and varying number of sensors and the CHs. The results are compared with some existing algorithms and original CRO based algorithm called as CRO-UCRA to show the superiority in terms of various performance metrics like residual energy, network lifetime, number of alive nodes, data packets received by the BS and convergence rate.  相似文献   

6.
Aiming at the problem that the location distribution of cluster head nodes filtered by wireless sensor network clustering routing protocol was unbalanced and the data transmission path of forwarding nodes was unreasonable,which would increase the energy consumption of nodes and shorten the network life cycle,a clustering routing protocol based on improved particle swarm optimization algorithm was proposed.In the process of cluster head election,a new fitness function was established by defining the energy factor and position equalization factor of the node,the better candidate cluster head node was evaluated and selected,the position update speed of the candidate cluster head nodes was adjusted by the optimized update learning factor,the local search and speeded up the convergence of the global search was expanded.According to the distance between the forwarding node and the base station,the single-hop or multi-hop transmission mode was adopted,and a multi-hop method was designed based on the minimum spanning tree to select an optimal multi-hop path for the data transmission of the forwarding node.Simulation results show that the clustering routing protocol based on improved particle swarm optimization algorithm can elect cluster head nodes and forwarding nodes with more balanced energy and location,which shortened the communication distance of the network.The energy consumption of nodes is lower and more balanced,effectively extending the network life cycle.  相似文献   

7.
In large-scale heterogeneous wireless sensor networks (WSNs), clustering is particularly significant for lowering sensor nodes (SNs) energy consumption and creating algorithm more energy efficient. The selection of cluster heads (CHs) is a crucial task in the clustering method. In this paper, optimised K-means clustering algorithm and optimised K-means based modified intelligent CH selection based on BFOA for large-scale network (lar-OK-MICHB) is hybridised for CH selection process. Here, we utilised the extended capabilities of OK-MICHB algorithm for large-scale network. Furthermore, in many applications where energy is a primary constraint, such as military surveillance and natural disaster prediction, the stability region is also a significant factor, with a longer network lifespan being a primary requirement. In the proposed approach, only the CH selection is made after every round in place of cluster and CH change as done in conventional hierarchical algorithm. The simulation results reveal that, while keeping the distributive structure of WSNs, suggested lar-OKMIDEEC can locate real greater leftover energy nodes for selection of CH without utilising randomise or estimated procedures. Furthermore, as compared with the multi-level MIDEEC protocol, this offers a larger stability region with 68.96% increment, more consistent selection of CH in every round, and greater packets (i.e., in numbers) received at the base station (BS) with a longer network lifetime with 327% increment.  相似文献   

8.
The advances in the size, cost of deployment, and user‐friendly interface of wireless sensor devices have given rise to many wireless sensor network (WSN) applications. WSNs need to use protocols for transmitting data samples from event regions to sink through minimum cost links. Clustering is a commonly used method of data aggregation in which nodes are organized into groups to reduce energy consumption. Nonetheless, cluster head (CH) has to bear an additional load in clustering protocols to organize different activities within the cluster. Proper CH selection and load balancing using efficient routing protocol is therefore a critical aspect for WSN's long‐term operation. In this paper, a threshold‐sensitive energy‐efficient cluster‐based routing protocol based on flower pollination algorithm (FPA) is proposed to extend the network's stability period. Using FPA, multihop communication between CHs and base station is used to achieve optimal link costs for load balancing distant CHs and energy minimization. Analysis and simulation results show that the proposed algorithm significantly outperforms competitive clustering algorithms in terms of energy consumption, stability period, and system lifetime.  相似文献   

9.
Designing an energy efficient and durable wireless sensor networks (WSNs) is a key challenge as it personifies potential and reactive functionalities in harsh antagonistic environment at which wired system deployment is completely infeasible. Majority of the clustering mechanisms contributed to the literature concentrated on augmenting network lifetime and energy stability. However, energy consumption incurred by cluster heads (CHs) are high and thereby results in minimized network lifetime and frequent CHs selection. In this paper, a modified whale-dragonfly optimization algorithm and self-adaptive cuckoo search-based clustering strategy (MWIDOA-SACS) is proposed for sustaining energy stability and augment network lifetime. In specific, MWIDOA-SACS is included for exploiting the fitness values that aids in determining two optimal nodes that are selected as optimal CH and cluster router (CR) nodes in the network. In MWIDOA, the search conduct of dragon flies is completely updated through whale optimization algorithm (WOA) for preventing load balancing at CHs. It minimized the overhead of CH by adopting CHs and CR for collecting information from cluster members and transmitting the aggregated data from CHs to the base station (BS). It included self-adaptive cuckoo search (SACS) for achieving sink mobility using radius, energy stability, received signal strength, and throughput for achieving optimal data transmission process after partitioning the network into unequal clusters. Simulation experiments of the proposed MWIDOA-SACS confirmed better performance in terms of total residual energy by 21.28% and network lifetime by 26.32%, compared to the competitive CH selection strategies.  相似文献   

10.
一种无线传感器网络分簇路由算法研究   总被引:2,自引:1,他引:1  
刘琼  成运 《现代电子技术》2010,33(10):162-164,174
在分析LEACH协议的基础上提出一种基于能量和距离的多跳路由算法(CAED)。由基站依据节点剩余能量和簇头与基站的距离分别选出二层簇头,簇内节点利用单跳和多跳模式与簇头进行通信。仿真实验表明,新算法有效地平衡了节点的能量消耗,并显著地延长了网络的生命周期。  相似文献   

11.

Enhancing the network lifetime of wireless sensor networks is an essential task. It involves sensor deployment, cluster formation, routing, and effective utilization of battery units. Clustering and routing are important techniques for adequate enhancement of the network lifetime. Since the existing clustering and routing approaches have high message overhead due to forwarding collected data to sinks or the base station, it creates premature death of sensors and hot-spot issues. The objective of this study is to design a dynamic clustering and optimal routing mechanism for data collection in order to enhance the network lifetime. A new dynamic clustering approach is proposed to prevent premature sensor death and avoid the hot spot problem. In addition, an Ant Colony Optimization (ACO) technique is adopted for effective path selection of mobile sinks. The proposed algorithm is compared with existing routing methodologies, such as LEACH, GA, and PSO. The simulation results show that the proposed cluster head selection algorithm with ACO-based MDC enhances the sensor network lifetime significantly.

  相似文献   

12.
Over the last several years, various clustering algorithms for wireless sensor networks have been proposed to prolong network lifetime. Most clustering algorithms provide an equal cluster size using node??s ID, degree and etc. However, many of these algorithms heuristically determine the cluster size, even though the cluster size significantly affects the energy consumption of the entire network. In this paper, we present a theoretical model and propose a simple clustering algorithm called Location-based Unequal Clustering Algorithm (LUCA), where each cluster has a different cluster size based on its location information which is the distance between a cluster head and a sink. In LUCA, in order to minimize the energy consumption of entire network, a cluster has a larger cluster size as increasing distance from the sink. Simulation results show that LUCA achieves better performance than conventional equal clustering algorithm for energy efficiency.  相似文献   

13.
Power efficiency and coverage preservation are two important performance metrics for a wireless sensor network. However, there is scarcely any protocol to consider them at the same time. In this paper, we propose a flow-balanced routing (FBR) protocol for multi-hop clustered wireless sensor networks that attempts to achieve both power efficiency and coverage preservation. The proposed protocol consists of four algorithms, one each for network clustering, multi-hop backbone construction, flow-balanced transmission, and rerouting. The proposed clustering algorithm groups several sensors into one cluster on the basis of overlapping degrees of sensors. The backbone construction algorithm constructs a novel multi-level backbone, which is not necessarily a tree, using the cluster heads and the sink. Furthermore, the flow-balanced routing algorithm assigns the transferred data over multiple paths from the sensors to the sink in order to equalize the power consumption of sensors. Lastly, the rerouting algorithm reconstructs the network topology only in a place where a head drops out from the backbone due to the head running out of its energy. Two metrics called the network lifetime and the coverage lifetime are used to evaluate the performance of FBR protocol in comparison with previous ones. The simulation results show that FBR yields both much longer lifetime and better coverage preservation than previous protocols. For example, FBR yields more than twice network lifetime and better coverage preservation than a previous efficient protocol, called the coverage-preserving clustering protocol (CPCP) [18], when the first sensor dies and the network coverage is kept at 100%, respectively.  相似文献   

14.

Energy conservation is the main issue in wireless sensor networks. Many existing clustering protocols have been proposed to balance the energy consumption and maximize the battery lifetime of sensor nodes. However, these protocols suffer from the excessive overhead due to repetitive clustering resulting in high-energy consumption. In this paper, we propose energy-aware cluster-based routing protocol (ECRP) in which not only the cluster head (CH) role rotates based on energy around all cluster members until the end of network functioning to avoid frequent re-clustering, but also it can adapt the network topology change. Further, ECRP introduces a multi-hop routing algorithm so that the energy consumption is minimized and balanced. As well, a fault-tolerant mechanism is proposed to cope up with the failure of CHs and relay nodes. We perform extensive simulations on the proposed protocol using different network scenarios. The simulation results demonstrate the superiority of ECRP compared with recent and relevant existing protocols in terms of main performance metrics.

  相似文献   

15.
One of the famous approaches to decision making is named as multicriteria decision making (MCDM). In order to solve the MCDM issues, a better way is provided by the fuzzy logic. Expendability, cost, maintenance, availability of software, and performance characteristics are such problems considered by the decision. The precise estimation of the pertinent data is one of the vital phases in DM systems. This paper presents a fuzzy MCDM‐based cluster head (CH) selection and hybrid routing protocol to solve the most common issues. In this research article, the generalized intuitionistic fuzzy soft set (GIFSS) approach is utilized to select the optimal CH, and hybrid shark smell optimization (SSO), and a genetic algorithm (GA) is introduced for the effective routing. Initially, the wireless sensor network (WSN) system and energy models are designed, and then the nodes are grouped into several clusters. Next, based on the GIFSS, the CH nodes are selected, and finally, an effective routing is placed based on the hybrid optimizations. The implementation is performed on the NS2 platform, and the performances are evaluated by packet delivery ratio (PDR), delay, packet loss ratio (PLR), network lifetime, bit error rate (BER), energy consumption, throughput, and jitter. The existing approaches named energy centers examining using particle swarm optimization (EC‐PSO), variable dimension‐based PSO (VD‐PSO), energy‐efficient PSO‐based CH selection (PSO‐ECHS), low‐energy adaptive clustering hierarchy‐sugeno fuzzy (LEACH‐SF), SSO, and GA are compared with the proposed strategy. According to the implemented outcomes, it displays the proposed strategy and gives improved outcomes than the others.  相似文献   

16.
Due to inherent issue of energy limitation in sensor nodes, the energy conservation is the primary concern for large‐scale wireless sensor networks. Cluster‐based routing has been found to be an effective mechanism to reduce the energy consumption of sensor nodes. In clustered wireless sensor networks, the network is divided into a set of clusters; each cluster has a coordinator, called cluster head (CH). Each node of a cluster transmits its collected information to its CH that in turn aggregates the received information and sends it to the base station directly or via other CHs. In multihop communication, the CHs closer to the base station are burdened with high relay load; as a result, their energy depletes much faster as compared with other CHs. This problem is termed as the hot spot problem. In this paper, a distributed fuzzy logic‐based unequal clustering approach and routing algorithm (DFCR) is proposed to solve this problem. Based on the cluster design, a multihop routing algorithm is also proposed, which is both energy efficient and energy balancing. The simulation results reinforce the efficiency of the proposed DFCR algorithm over the state‐of‐the‐art algorithms, ie, energy‐aware fuzzy approach to unequal clustering, energy‐aware distributed clustering, and energy‐aware routing algorithm, in terms of different performance parameters like energy efficiency and network lifetime.  相似文献   

17.
Radhika  M.  Sivakumar  P. 《Wireless Networks》2021,27(1):27-40

This article presents the design, analyses and implementation of the novel routing protocol for energy optimization based on LEACH for WSN. Network Lifetime is the major problem in various routing protocols used in WSN. In order to overcome that problem, our proposed routing protocol is developed, which is a combination of Micro Genetic algorithm with LEACH protocol. Our proposed µGA-LEACH protocol, strengthen the cluster head (CH) selection and also reduce the energy consumption of the network when compared to existing protocols. This paper shows the improvement of network lifetime and energy consumption with the optimal CH selection based on a micro genetic algorithm and also compared the results with an existing hierarchical routing protocol like LEACH, LEACH-C, LEACH GA and GADA LEACH routing protocol with various packet sizes, and initial energy.

  相似文献   

18.
LEACH算法是为满足高效节能需要而提出的一种典型的分簇协议.在此基础上,提出了一种改进算法:主要体现在在网络开始工作时使用静态分簇,以簇为单位进行簇内节点轮换当选为簇首,簇间以及簇与基站间的通讯采用单跳与多跳结合的方式.最后使用NS2对LEACH算法和改进的算法进行仿真对比,证实了改进后的算法在与LEACH算法相比性能有了很大的提高.  相似文献   

19.
We consider information retrieval in a wireless sensor network deployed to monitor a spatially correlated random field. We address optimal sensor scheduling and information routing under the performance measure of network lifetime. Both single-hop and multi-hop transmissions from sensors to an access point are considered. For both cases, we formulate the problems as integer programming based on the theories of coverage and connectivity in sensor networks. We derive upper bounds for the network lifetime that provide performance benchmarks for suboptimal solutions. Suboptimal sensor scheduling and data routing algorithms are proposed to approach the lifetime upper bounds with reduced complexity. In the proposed algorithms, we consider the impact of both the network geometry and the energy consumption in communications and relaying on the network lifetime. Simulation examples are used to demonstrate the performance of the proposed algorithms as compared to the lifetime upper bounds.  相似文献   

20.
Designing energy efficient communication protocols for wireless sensor networks (WSNs) to conserve the sensors' energy is one of the prime concerns. Clustering in WSNs significantly reduces the energy consumption in which the nodes are organized in clusters, each having a cluster head (CH). The CHs collect data from their cluster members and transmit it to the base station via a single or multihop communication. The main issue in such mechanism is how to associate the nodes to CHs and how to route the data of CHs so that the overall load on CHs are balanced. Since the sensor nodes operate autonomously, the methods designed for WSNs should be of distributed nature, i.e., each node should run it using its local information only. Considering these issues, we propose a distributed multiobjective‐based clustering method to assign a sensor node to appropriate CH so that the load is balanced. We also propose an energy‐efficient routing algorithm to balance the relay load among the CHs. In case any CH dies, we propose a recovery strategy for its cluster members. All our proposed methods are completely distributed in nature. Simulation results demonstrate the efficiency of the proposed algorithm in terms of energy consumption and hence prolonging the network lifetime. We compare the performance of the proposed algorithm with some existing algorithms in terms of number of alive nodes, network lifetime, energy efficiency, and energy population.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号