首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The goal of the study presented in this paper was to evaluate the impact of different filter types on the performance of three typical packaged air conditioners under both clean and fouled conditions. In a companion paper, combinations of six different levels of filtration and four different coils were tested under clean and fouled conditions. From the tests, it was found that fouling has a relatively small impact on air-side effective heat transfer coefficient, but can have a large impact on coil pressure drop. Data from the experimental study were used in developing simulation models for the three packaged air conditioners. Simulations show that the equipment cooling capacity is reduced with fouling primarily because of a decrease in air flow due to the increased pressure drop. In most cases, EER (energy efficiency ratio) was reduced with fouling primarily due to increased fan power. However, the changes in EER were relatively small, in the range of 1–10%. Equipment having low efficiency filters had higher EER after fouling than equipment with high efficiency filters, because high efficiency filters result in significantly higher pressure drops than low efficiency filters. The impact of the evaporator side fan efficiency was found to be significant. The energy penalty associated with high efficiency filters was reduced greatly when fan efficiency increased. Although high efficiency filters cause higher energy penalties they provide considerably better air quality. The quantity of dust passing through the coil with an MERV14 filter was approximately 30 times less than the dust passing the coil with an MERV4 filter. This difference was doubled when the MERV14 filter was compared to a case with no filter in place.  相似文献   

2.
In most domestic and commercial refrigeration systems, frost forms on the air-side surface of the air-to-refrigerant heat exchanger. Frost-tolerant designs typically employ a large fin spacing in order to delay the need for a defrost cycle. Unfortunately, this approach does not allow for a very high air-side heat transfer coefficient, and the performance of these heat exchangers is often air-side limited. Longitudinal vortex generation is a proven and effective technique for thinning the thermal boundary layer and enhancing heat transfer, but its efficacy in a frosting environment is essentially unknown. In this study, an array of delta-wing vortex generators is applied to a plain-fin-and-tube heat exchanger with a fin spacing of 8.5 mm. Heat transfer and pressure drop performance are measured to determine the effectiveness of the vortex generator under frosting conditions. For air-side Reynolds numbers between 500 and 1300, the air-side thermal resistance is reduced by 35–42% when vortex generation is used. Correspondingly, the heat transfer coefficient is observed to range from 33 to 53 W m−2 K−1 for the enhanced heat exchanger and from 18 to 26 W m−2 K−1 for the baseline heat exchanger.  相似文献   

3.
The objective of this study is to provide experimental data that can be used in the optimal design of flat plate finned-tube heat exchangers with large fin pitch. In this study, 22 heat exchangers were tested with a variation of fin pitch, number of tube row, and tube alignment. The air-side heat transfer coefficient decreased with a reduction of the fin pitch and an increase of the number of tube row. The reduction in the heat transfer coefficient of the four-row heat exchanger coil was approximately 10% as the fin pitch decreased from 15.0 to 7.5 mm over the Reynolds number range of 500–900 that was calculated based on the tube diameter. For all fin pitches, the heat transfer coefficient decreased as the number of tube row increased from 1 to 4. The staggered tube alignment improved heat transfer performance more than 10% compared to the inline tube alignment. A heat transfer correlation was developed from the measured data for flat plate finned-tubes with large fin pitch. The correlation yielded good predictions of the measured data with mean deviations of 3.8 and 6.2% for the inline and staggered tube alignment, respectively.  相似文献   

4.
The potential of winglet type vortex generator (VG) arrays for air-side heat transfer enhancement is experimentally evaluated by full-scale wind-tunnel testing of a compact plain-fin-and-tube heat exchanger. The effectiveness of a 3VG alternate-tube inline array of vortex generators is compared to a single-row vortex generator design and the baseline configuration. The winglets are placed in a common-flow-up orientation for improved tube wake management. The overall heat transfer and pressure drop performance are assessed under dry-surface conditions over a Reynolds number range based on hydraulic diameter of 220 ≤ Re ≤ 960. It is found that the air-side heat transfer coefficient increases from 16.5% to 44% for the single-row winglet arrangement with an increase in pressure drop of less than 12%. For the three-row vortex generator array, the enhancement in heat transfer coefficient increases with Reynolds number from 29.9% to 68.8% with a pressure drop penalty from 26% at Re = 960 to 87.5% at Re = 220. The results indicate that vortex generator arrays can significantly enhance the performance of fin-tube heat exchangers with flow depths and fin densities typical to those used in air-cooling and refrigeration applications.  相似文献   

5.
The effect of air inlet humidity condition on the air-side heat transfer and pressure drop characteristics for an inclined brazed aluminum heat exchanger has been investigated experimentally. For a heat exchanger with a louver angle of 27°, fin pitch of 2.1 mm and flow depth of 27.9 mm, a series of tests are conducted for the air-side Reynolds numbers of 80–400, with variation of inlet humidity condition. The heat transfer data are obtained for wet condition only and the pressure drop data are measured for both dry and wet conditions. The inlet air temperature and relative humidity range are 12 °C and 60–90%, respectively. The inclination angles (θ) from the vertical position are 0, 14, 45, and 67° clockwise (leeward direction). The inclination angles affect moderately the sensible heat transfer coefficient for wet condition, and the pressure drops for both dry and wet conditions increase systematically with the inclination angle. The heat transfer and pressure drop characteristics under wet condition are not influenced substantially by the air inlet humidity for θ 45°. The effect of the louver directions at the inlet and outlet of the inclined heat exchanger on the performance is also addressed.  相似文献   

6.
An experimental study on the air-side heat transfer and pressure drop characteristics for multi-louvered fin and flat tube heat exchangers has been performed. For 45 heat exchangers with different louver angles (15–29°), fin pitches (1.0, 1.2, 1.4 mm) and flow depths (16, 20, 24 mm), a series of tests were conducted for the air-side Reynolds numbers of 100–600, at a constant tube-side water flow rate of 0.32 m3/h. The inlet temperatures of the air and water for heat exchangers were 21 and 45°C, respectively. The air-side thermal performance data were analyzed using effectiveness-NTU method for cross-flow heat exchanger with both fluid unmixed conditions. The heat transfer coefficient and pressure drop data for heat exchangers with different geometrical configurations were reported in terms of Colburn j-factor and Fanning friction factor f, as functions of Reynolds number based on louver pitch. The general correlations for j and f factors are developed and compared to other correlations. The f correlation indicates that the flow depth is one of the important parameters for the pressure drop.  相似文献   

7.
The present paper discusses the results of an extensive investigation about the performance of various fin configurations, carried out in the Luve Contardo experimental facilities and aimed to enhance the heat transfer capabilities of air-cooled condensers and liquid coolers. Test results here discussed are relative to 15 coil prototypes, having the same tube and fin geometry (25×21.65 mm staggered 5/8” tube banks, 2 mm fin spacing) but different fin surface geometry, from flat to wavy to louvered to “winglet”. Different rates of heat transfer and pressure loss enhancement were obtained, also depending on the quality of the pressing process. General approaches to evaluate the “goodness” of one fin design with respect to another one provided questionable results: pressure loss influence on the air flow cannot be properly evaluated unless the actual fan head curve and the coil dimensions (front area and rows number) are stipulated. The performance of air-cooled condensers was therefore predicted and compared, for various fin design and for coil arrangements of practical interest. The type of fin adopted strongly influences the heat exchanger performance and louvered fins generally provide the best results.  相似文献   

8.
An experimental study for air-side thermal-hydraulic performance of brazed aluminum heat exchangers under dehumidifying conditions has been performed. For 30 samples of louvered fin heat exchangers with different geometrical parameters, the heat transfer and pressure drop characteristics for wet surface were evaluated. The test was conducted for air-side Reynolds number in the range of 80–300 and tube-side water flow rate of 320 kg/h. The dry- and wet-bulb temperatures of the inlet air for heat exchangers were 27 and 19 °C, respectively and the inlet water temperature was 6 °C. The air-side thermal performance data for cooling and dehumidifying conditions were analyzed using effectiveness-NTU method for cross-flow heat exchanger with both fluids unmixed. The test results are reported, compared with those for the dry surface heat exchangers, in terms of sensible j factor and friction factor f, as functions of Reynolds number based on louver pitch. The correlations for j and f factors are developed within rms errors of ±16.9 and ±13.6%, respectively.  相似文献   

9.
Experimental investigations on the effects of biofouling on air-side heat transfer and pressure drop for three biofouled finned tube heat exchangers and one clean finned tube heat exchanger were performed. Artificial accelerated method of microorganism growth on the fin surface was used for simulating the biofouled finned tube heat exchangers. Experimental results indicate that the effects of biofouling on the air-side heat transfer coefficient decreases 7.2% at 2.0 m/s when the biofouled area ratio is 10%, while it decreases 15.9% at 2.0 m/s when the biofouled area ratio is 60%, and biofouling causes a 21.8%  41.3% increase in pressure drop when the air velocity is between 0.5 and 2.0 m/s. The increase of inlet air velocity is helpful to improve the long-term performance of finned tube heat exchanger. Biofouling makes the hydrophilic coating failure, and the condensation water easily converges on the fin surface where biofouling grows.  相似文献   

10.
The thermal-hydraulic performance under conditions of an initial frost growth on the air-side surface, and for subsequent ‘refrosting’ after a defrost period is experimentally studied for folded-louvered-fin, microchannel heat exchangers. In total, five heat exchangers are considered; the thermal performances during one frost-growth cycle for four different fin geometries are compared in terms of overall heat transfer coefficient, pressure drop, and j and f factors; the defrost and refrost characteristics of two heat exchangers are compared to explore geometry effects. Typically, the performance under refrosting conditions becomes periodic and repeatable after the third or fourth refrosting cycle. The allowable frost growth period (before a defrost is required), the defrost requirement, and the thermal-hydraulic performance depend on heat exchanger geometry for the specimens used in this study.  相似文献   

11.
This paper mainly deals with the cooling and dehumidifying performance of air coils used in refrigeration and air-conditioning systems. A new method, equivalent dry-bulb temperature (EDT) method, is proposed for calculating the heat and mass transfer and for predicting the cooling modes (totally wet, partially wet, and totally dry) of moist air over the coil surface. A numeric model is further developed and validated with the experimental data of plain fin air coils. The deviation in both the cooling capacity and the vapor condensate estimated by the model is within the range of ±10%, and the prediction for the cooling modes of moist air over the coil surfaces is fairly exact.  相似文献   

12.
采用CFD数值模拟的方法,对整体翅片式微通道换热器空气侧的流动与传热特性进行研究,用场协同的原理分析翅片参数(长度、高度、间距)对换热器性能的影响,并与传统微通道换热器空气侧性能进行对比。结果表明:在考查的翅片尺寸范围内,随着翅片长度的缩短、高度的增加、间距的减小,温度场和速度场的协同性随之改善,有利于换热效果的提高;与传统的微通道换热器相比,整体翅片式微通道换热器空气侧换热性能变差,但是阻力大大降低,总体性能有所改善。  相似文献   

13.
In this study, external condensation heat transfer coefficients (HTCs) are measured for nonazeotropic refrigerant mixtures (NARMs) of HFC32/HFC134a and HFC134a/HCFC123 on a low fin and Turbo-C tubes. All measurements are taken at the vapor temperature of 39 °C with the wall subcooling of 3–8 °C. Test results showed that condensation HTCs of NARMs on enhanced tubes were severely degraded from the ideal values showing up to 96% decrease. HTCs of the mixtures on Turbo-C tube were degraded more than those on low fin tube such that HTCs of the mixtures at the same composition were similar regardless of the tube. The mixture with larger gliding temperature differences (GTDs), HFC134a/HCFC123, showed a larger heat transfer reduction from the ideal values than the mixture with smaller GTDs, HFC32/HFC134a. Heat transfer enhancement ratios of the enhanced tubes with NARMs were almost 2 times lower than those with pure refrigerants and they decreased more as the GTDs of the mixtures increased.  相似文献   

14.
In this research, the cooling heat transfer coefficient and pressure drop of supercritical CO2 with PAG-type lubricating oil entrained were experimentally investigated. The inner diameter of the test tubes ranged from 1 to 6 mm. The experiments were conducted at lubricating oil concentrations from 0 to 5%, pressures from 8 to 10 MPa, mass fluxes from 200 to 1200 kg m−2 s−1, and heat fluxes from 12 to 24 kW m−2.In comparison to the oil-free condition, when lubricating oil entrainment occurred, the heat transfer coefficient decreased and the pressure drop increased. The maximum reduction in the heat transfer coefficients—about 75%—occurred in the vicinity of the pseudocritical temperature. The influence of oil was significant for a small tube diameter and a large oil concentration. From visual observation, it was confirmed that this degradation in the heat transfer was due to the formation of an oil-rich layer along the inner wall of the test tube. However, when the oil concentration exceeded 3%, no further degradation in the heat transfer coefficient could be confirmed, which implies that the oil flowing along with CO2 in the bulk region does not influence the heat transfer coefficient and the pressure drops significantly. For a large tube at a lower mass flux, no significant degradation in the heat transfer coefficient was observed until the oil concentration reached 1%. This is due to the transition of the flow pattern from an annular-dispersed flow to a wavy flow for a large tube, with CO2 flowing on the upper side and the oil-rich layer on the lower side of the test section.  相似文献   

15.
In this study, nucleate boiling heat transfer coefficients (HTCs) of HCFC22, HFC134a, HFC125, HFC32 were measured on a low fin, Turbo-B, and Thermoexcel-E tubes. All data were taken at the liquid pool temperature of 7 °C on horizontal tubes of 152 mm length and 18.6–18.8 mm outside diameter at heat fluxes of 10–80 kW m−2 with an interval of 10 kW m−2 in the decreasing order of heat flux. For a plain and low fin tubes, refrigerants with higher vapor pressures showed higher nucleate boiling HTCs consistently. This was due to the fact that the wall superheat required to activate given size cavities became smaller as pressure increased. For Turbo-B and Thermoexcel-E tubes, HFC125 showed a peculiar behavior exhibiting much reduced HTCs due to its high reduced pressure. The heat transfer enhancement ratios of the low fin, Turbo-B, and Thermoexcel-E tubes were 1.09–1.68, 1.77–5.41, 1.64–8.77 respectively in the range of heat fluxes tested.  相似文献   

16.
Carbon dioxide among natural refrigerants has gained a considerable attention as an alternative refrigerant due to its excellent thermophysical properties. In-tube evaporation heat transfer characteristics of carbon dioxide were experimentally investigated and analyzed as a function of evaporating temperature, mass flux, heat flux and tube geometry. Heat transfer coefficient data during evaporation process of carbon dioxide were measured for 5 m long smooth and micro-fin tubes with outer diameters of 5 and 9.52 mm. The tests were conducted at mass fluxes of from 212 to 656 kg m−2 s−1, saturation temperatures of from 0 to 20 °C and heat fluxes of from 6 to 20 kW m−2. The difference of heat transfer characteristics between smooth and micro-fin tubes and the effect of mass flux, heat flux, and evaporation temperature on enhancement factor (EF) and penalty factor (PF) were presented. Average evaporation heat transfer coefficients for a micro-fin tube were approximately 150–200% for 9.52 mm OD tube and 170–210% for 5 mm OD tube higher than those for the smooth tube at the same test conditions. The effect of pressure drop expressed by measured penalty factor of 1.2–1.35 was smaller than that of heat transfer enhancement.  相似文献   

17.
This paper reports an experimental investigation of convective boiling heat transfer and pressure drop of refrigerant R-134a in smooth, standard microfin and herringbone copper tubes of 9.52 mm external diameter. Tests have been conducted under the following conditions: inlet saturation temperature of 5 °C, qualities from 5 to 90%, mass velocity from 100 to 500 kg s−1 m−2, and a heat flux of 5 kW m−2. Experimental results indicate that the herringbone tube has a distinct heat transfer performance over the mass velocity range considered in the present study. Thermal performance of the herringbone tube has been found better than that of the standard microfin in the high range of mass velocities, and worst for the smallest mass velocity (G=100 kg s−1 m−2) at qualities higher than 50%. The herringbone tube pressure drop is higher than that of the standard microfin tube over the whole range of mass velocities and qualities. The enhancement parameter is higher than one for both tubes for mass velocities lower than 200 kg s−1 m−2. Values lower than one have been obtained for both tubes in the mass velocity upper range as a result of a significant pressure drop increment not followed by a correspondent increment in the heat transfer coefficient.  相似文献   

18.
The performances of three types of heat exchangers that use the louver fin geometry: (1) parallel flow parallel fin with extruded flat tubes heat exchanger (PF2), (2) parallel flow serpentine fin with extruded flat tubes heat exchanger (PFSF) and (3) round tube wave plate fin heat exchanger (RTPF) have been experimentally studied under dry, wet and frost conditions and results are presented. The parameters quantified include air-side pressure drop, water retention on the surface of the heat exchanger, capacity and overall heat transfer coefficient for air face velocity 0.9, 2 and 3 m/s, air humidity 70% and 80% and different orientations. The performances of three types of heat exchanger are compared and the results obtained are presented. The condensate drainage behavior of the air-side surface of these three heat exchanger types was studied using both the dip testing method and wind tunnel experiment.  相似文献   

19.
In this study, nucleate boiling heat transfer coefficients (HTCs) of five flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), and dimethylether (RE170) were measured at the liquid temperature of 7 °C on a low fin tube of 1023 fins per meter, Turbo-B, and Thermoexcel-E tubes. All data were taken from 80 to 10 kW m−2 with an interval of 10 kW m−2 in the decreasing order of heat flux. Flammable refrigerants' data showed a typical trend that nucleate boiling HTCs obtained on enhanced tubes also increase with the vapor pressure. Fluids with lower reduced pressure such as DME, isobutene, and butane took more advantage of the heat transfer enhancement mechanism of enhanced tubes than those with higher reduced pressure such as propylene and propane. Finally, Thermoexcel-E showed the highest heat transfer enhancement ratios of 2.3–9.4 among the tubes tested due to its sub-channels and re-entrant cavities.  相似文献   

20.
Effects of fin height and helix angle on condensation inside a herringbone microfin tube have been experimentally investigated with five types of herringbone microfin tubes. Heat transfer coefficients are about 2–4 times higher than that of the helical microfin tube under high mass velocity conditions. In the low mass velocity, they are equal to that of the helical microfin tube. The heat transfer enhancement increases with fin height up to 0.18 mm; higher fin heights show enhancement values similar to the 0.18 mm results. Pressure drop increases with the fin height. Larger helix angle yields higher heat transfer and higher pressure drop. For the lowest fin and/or smallest helix angle, the pressure drop is comparable with that of the helical microfin tube, while the heat transfer enhancement is higher. The enhancement mechanism is discussed from flow pattern observations. Effect of mass transfer resistance for R410A is estimated and negligible effects have been proved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号