首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report on the epitaxial growth and electrical properties of Pb0.52Zr0.48TiO3 (PZT) thin films deposited by Pulsed Laser Deposition (PLD) on SrTiO3 (STO)-buffered Si(001). Previously to PZT growth, 40 nm-thick (La,Sr)MnO3 (LSMO) layer was deposited to serve as electrical bottom electrode. The 200 nm-thick PZT film epitaxy was optimized by PLD on STO-buffered Si(001).The high contrast of stable artificially poled ferroelectric surfaces evidences the good ferroelectric properties of the PZT thin film. The structural as well as the physical properties of the PZT/LSMO/STO/Si(001) structure prove that very good quality layers have been obtained for films grown on silicon substrate.  相似文献   

2.
We deposited a thin epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) layer on the (0 0 1) SrTiO3 (STO) substrate doped with Nb (0.5 wt.%), then grew composite thin film of CoFe2O4 (CFO) and PZT phases on it. X-ray diffraction and high resolution transmission electron microscopy showed that the PZT and CFO phases in the film had perfect epitaxial structures. CFO nanoparticles were embedded in PZT matrix randomly, which was useful to enhance the insulativity of the composite film. The composite thin film exhibited good ferromagnetic and ferroelectric properties. The dielectric constants of the composite thin film kept unchangeable in a wide bias electric field, but increased in a magnetic field, namely, magnetodielectric effect. The possible reasons for the magnetodielectric effect were discussed.  相似文献   

3.
High quality epitaxial Bi3.15Nd0.85Ti3O12 (BNT) thin films with thicknesses from 30 to 80 nm have been integrated on SiO2/Si substrates. MgO templates deposited by ion-beam-assisted deposition and SrRuO3 (SRO) buffer layers processed by pulsed laser deposition have been used to initiate the epitaxial growth of BNT films on the amorphous SiO2/Si substrates. The structural and ferroelectric properties were investigated. Microstructural studies by X-ray diffraction and transmission electron microscopy revealed high quality crystalline with an epitaxial relationship of (001)BNT||(001)SRO||(001)MgO and [100]BNT||[110]SRO||[110]MgO. A ferroelectric hysteresis loop with a remanent polarization of 3.1 μC/cm2 has been observed for a 30 nm thick film. The polarization exhibits a fatigue-free characteristic up to 1.44 × 1010 switching cycles.  相似文献   

4.
A new chemical solution deposition method for the epitaxial growth of La0.66Sr0.33MnO3 (LSMO) thin films from metal acetates, acetylacetonates and propionic acid is presented. Using this method, epitaxial LSMO thin films were grown on (001) SrTiO3 (STO) single crystalline substrates in the temperature range from 800 °C to 1100 °C, both in air and in oxygen atmosphere. The LSMO thin films exhibit good structural and electrical properties. The FWHM of the ω-scan for the (002) peak has a mean value of 0.06°. The Curie temperature of the LSMO thin films is about 320 K and 350 K for the annealed in oxygen and air, respectively.  相似文献   

5.
Bi0.4Ca0.6MnO3 (BCMO) film with a thickness of 110 nm was epitaxially grown on a (110) SrTiO3 (STO) substrate using pulsed laser ablation technique. The microstructure of the epitaxial films was investigated by transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM) in details. Two different kinds of dislocations, one being perpendicular to the BCMO/STO interface, the other being parallel to the interface, have been commonly observed. The formation mechanism for these dislocations has been discussed. All the dislocations are thought to relieve the local strain in the epitaxial film.  相似文献   

6.
Following the success in understanding the textures in TiSi2 (C49) epitaxy on (001)Si surface using the edge-to-edge matching model that was originally developed for predicting the crystallographic features of diffusion-controlled phase transformations in solids, the present work applies this model to understand the in-plane texture in TiSi2 (C54) thin films on Si single crystal surfaces and to explain why its epitaxial growth is more favoured on (111)Si than on (001)Si. Based on the actual atomic spacing along the matching directions across the interface between the thin films and the substrate, the model predicts most of the experimentally observed orientation relationships (ORs) and that the preferred order among the different systems is C49/(001)Si system > C54/(111)Si system > C49/(111)Si system ≅ C54/(001)Si system. The model has strong potential to be used to develop new thin film materials.  相似文献   

7.
Epitaxial anatase titanium dioxide (TiO2) films have been grown by atomic layer deposition (ALD) on Si(001) substrates using a strontium titanate (STO) buffer layer grown by molecular beam epitaxy (MBE) to serve as a surface template. The growth of TiO2 was achieved using titanium isopropoxide and water as the co-reactants at a substrate temperature of 225-250 °C. To preserve the quality of the MBE-grown STO, the samples were transferred in-situ from the MBE chamber to the ALD chamber. After ALD growth, the samples were annealed in-situ at 600 °C in vacuum (10− 7 Pa) for 1-2 h. Reflection high-energy electron diffraction was performed during the MBE growth of STO on Si(001), as well as after deposition of TiO2 by ALD. The ALD films were shown to be highly ordered with the substrate. At least four unit cells of STO must be present to create a stable template on the Si(001) substrate for epitaxial anatase TiO2 growth. X-ray diffraction revealed that the TiO2 films were anatase with only the (004) reflection present at 2θ = 38.2°, indicating that the c-axis is slightly reduced from that of anatase powder (2θ = 37.9°). Anatase TiO2 films up to 100 nm thick have been grown that remain highly ordered in the (001) direction on STO-buffered Si(001) substrates.  相似文献   

8.
T.J. Zhu  X.B. Zhao 《Thin solid films》2006,515(4):1445-1449
Ferroelectric/shape memory alloy thin film multilayered heterostructures possess both sensing and actuating functions and are considered to be smart. In this article, Pb(Zr0.52Ti0.48)O3 (PZT) ferroelectric thin films and Ti-riched TiNi shape memory alloy thin films have been deposited on Si and SiO2/Si substrates in the 400-600 °C temperature range by pulsed laser deposition technique. Deposition processing, microstructure and surface morphology of these films are described. The TiNi films deposited at 500 °C had an austenitic B2 structure with preferred (110) orientation. The surfaces of the films were very smooth with the root-mean-square roughness on a unit cell level. The structure of the TiNi films had a significant influence on that of the subsequently deposited PZT films. The single B2 austenite phase of the TiNi favored the growth of perovskite PZT films. The PZT/TiNi heterostructures with the PZT and TiNi films respectively deposited at 600 and 500 °C exhibited a polarization-electric field hysteresis behavior with a leakage current of about 2 × 10− 6 A/cm2.  相似文献   

9.
0.68PbMg1/3Nb2/3O3-0.32PbTiO3 (PMN-PT) thin films with a lead zirconate titanate Pb(Zr0.3Ti0.7)O3 (PZT)/PbOx buffer layer were deposited on Pt/TiO2/SiO2/Si substrates by radio frequency magnetron sputtering technique, and pure perovskite crystalline phase with highly (100)-preferred orientation was formed in the ferroelectric films. We found that the highly (100)-oriented thin films possess not only excellent dielectric and ferroelectric properties but also a large electrocaloric effect (13.4 K at 15 V, i.e., 0.89 K/V) which is attributed to the large electric field-induced polarization and entropy change during the ferroelectric-paraelectric phase transition. The experimental results indicate that the use of PZT/PbOx buffer layer can induce the crystal orientation and phase purity of the PMN-PT thin films, and consequently enhance their electrical properties.  相似文献   

10.
Xueyan Tian  Yinzhu Li 《Thin solid films》2009,517(20):5855-5857
Lead zirconate titanate (Pb(Zr0.52Ti0.48)O3, PZT) thin films fabricated by magnetron sputtering technique on the Pt/Ti/SiO2/Si substrates at room temperature, were annealed by means of CO2 laser with resulting average substrate temperature below 500 °C. The crystal structure, surface morphology and pyroelectric properties of the PZT films before and after annealing were investigated by X-ray diffraction, atomic force microscopy, and pyroelectric measurements. The results show that the annealed PZT thin film with a laser energy density of 490 W/cm2 for 25 s has a typical perovskite phase, uniform crystalline particles with a size of about 90 nm, and a high pyroelectric coefficient with 1.15 × 10− 8 Ccm− 2 K− 1.  相似文献   

11.
Epitaxial SrTiO3(STO)/BaTiO3(BTO) artificial superlattices have been grown on TiN buffered Si (001) substrates by pulsed laser deposition method and the effects of stacking periodicity and processing oxygen partial pressure on their crystallinity and dielectric properties were studied. The crystal orientation, epitaxy nature, and microstructure of STO/BTO superlattices were investigated using X-ray diffraction and transmission electron microscopy. The TiN buffer layer and superlattice thin films were grown with cube-on-cube epitaxial orientation relationship of [110](001)films∣∣[110](001)TiN∣∣[110](001)Si. The c-axis lattice parameter of the STO/BTO superlattice decreased from 0.412 nm to 0.406 nm with increasing oxygen partial pressure and the dielectric constants, measured at the frequency of 100 kHz at room temperature, of the superlattices with 2 nm/2 nm periodicity increased from 312 at 1 × 10− 5 Torr to 596 at 1 × 10− 3 Torr. The dielectric constants of superlattices grown at oxygen partial pressure of 1 × 10− 3 Torr increased from 264 to 678 with decreasing periodicity of the superlattices from 10 nm/10 nm to 1 nm/1 nm.  相似文献   

12.
Ferroelectric (Pb0.8,La0.1,Ca0.1)TiO3/Pb(Zr0.2,Ti0.8)O3 (PLCT/PZT) bilayered thin film was prepared on Pt(111)/Ti/SiO2/Si(100) substrate by RF magnetron sputtering technique. Pure perovskite crystalline phase, determined by X-ray diffraction, was formed in the PLCT/PZT bilayer. The bilayered film exhibited a very dense and smooth surface morphology with a uniform grain size distribution. The ferroelectric domain structures were investigated by a combination of vertical and lateral piezoresponse force microscopy (VPFM and LPFM, respectively). It is demonstrated by both VPFM and LPFM observations that out-of-plane and in-plane lamellar ferroelectric domains coexist in the bilayered thin film. The PLCT/PZT bilayered film possesses good ferroelectric properties with relatively high spontaneous polarization (2Ps = 82 µC/cm2) and remnant polarization (2Pr = 26.2 µC/cm2).  相似文献   

13.
Thin films of the relaxor ferroelectric Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT) on Pt/Ti/SiO2/Si (Pt/Si) substrates both with and without a Pb(Zr0.52Ti0.48)O3 (PZT) interfacial layer were investigated. Perovskite and pyrochlore coexistence was observed for PMN-PT thin films without a PZT interfacial layer. Interestingly, most of the pyrochlore phase was observed in single-coated films and in the first layer of multi-coated films. The pyrochlore phase exhibited grains with an average size of about 25 nm, which is smaller than those of the perovskite phase (about 90 nm). In contrast, for PMN-PT thin films grown on a PZT interfacial layer, the formation of a pyrochlore phase at the interface between PMN-PT layers and the substrate is completely suppressed. Moreover, small grains are not observed in the films with a PZT interfacial layer. The measured polarization-electric field (P-E) hysteresis loops of PMN-PT films with and without PZT layers indicate that enhanced electrical properties can be obtained when a PZT interfacial layer is used. These enhanced properties include an increase in the value of remanent polarization Pr from 2.7 to 5.8 μC/cm2 and a decrease in the coercive field Ec from 60.5 to 28.0 kV/cm.  相似文献   

14.
Epitaxial hexagonal YMnO3 (h-YMnO3) films having sharp (00l) X-ray diffraction peaks were grown above 700 °C in 5 mTorr O2 via pulsed laser deposition both on as-received wurtzite GaN/AlN/6H-SiC(001) (w-GaN) substrates as well as on w-GaN surfaces that were etched in 50% HF solution. High-resolution transmission electron microscopy revealed an interfacial layer between film and the unetched substrate; this layer was absent in those samples wherein an etched substrate was used. However, the substrate treatment did not affect the epitaxial arrangement between the h-YMnO3 film and w-GaN substrate. The epitaxial relationships of the h-YMnO3 films with the w-GaN(001) substrate was determined via X-ray diffraction to be (001)YMnO3 ‖ (001)GaN : [11¯0]YMnO3 ‖ [110]GaN; in other words, the basal planes of the film and the substrate are aligned parallel to one another, as are the most densely packed directions in planes of the film and the substrate. Interestingly, this arrangement has a larger lattice mismatch than if the principal axes of the unit cells were aligned.  相似文献   

15.
The Pb(Zr0.80Ti0.20)O3 (PZT) thin films with and without a PbO buffer layer were deposited on the Pt(1 1 1)/Ti/SiO2/Si(1 0 0) substrates by radio frequency (rf) magnetron sputtering method. The PbO buffer layer improves the microstructure and electrical properties of the PZT thin films. High phase purity and good microstructure of the PZT thin films with a PbO buffer layer were obtained. The effect of the PbO buffer layer on the ferroelectric properties of the PZT thin films was also investigated. The PZT thin films with a PbO buffer layer possess better ferroelectric properties with higher remnant polarization (Pr = 25.6 μC/cm2), and lower coercive field (Ec = 60.5 kV/cm) than that of the films without a PbO buffer layer (Pr = 9.4 μC/cm2, Ec = 101.3 kV/cm). Enhanced ferroelectric properties of the PZT thin films with a PbO buffer layer is attributed to high phase purity and good microstructure.  相似文献   

16.
In this paper, simple chemical solution deposition method is used to prepare La0.95Sr0.05CoO3 thin films on SrTiO3 (001) substrates by acetate-based precursors. The derived film is characterized by x-ray diffraction, field-emission scanning electron microscopy and transmission electronic microscopy. The derived film is epitaxial growth with < 001>[100] La0.95Sr0.05CoO3||<001>[100] SrTiO3, indicating that the chemical solution deposition is an effective route to obtain the cobalt-based films. The resistivity, Seebeck coefficient and thermal power factor are 0.05Ω cm, 250 μV/K and 0.21 mWK− 2m− 1 at 300 K, respectively, which is higher than these of the ceramics, indicating epitaxial thin film is an effective route to enhance the thermoelectric properties of La0.95Sr0.05CoO3.  相似文献   

17.
Multiferroic epitaxial films, include SrRuO3/Pb(Zr0.95Ti0.05)O3/CoFe2O4 has been successfully deposited on SrTiO3 substrate by pulsed-laser deposition technique. The results show that the prepared films exhibit a single phase. The Pb(Zr0.95Ti0.05)O3 (PZT) film was highly textured with (1 0 0) orientation and gives good ferroelectric properties with saturated polarization of 15 μC/cm2. The magnetic coercivity of CoFe2O4 film on Pb(Zr0.95Ti0.05)O3 has been dampened to 0.9 kOe. The anisotropic magnetically behavior of CoFe2O4 film was changed to isotropic by using high Zr concentrated PZT as underneath layer. Heterostructure films show a good ferromagnetic and ferroelectric coupling that lead to the large magnetoelectricity of 287 mV/cm Oe.  相似文献   

18.
The work reports the direct epitaxial growth of SrTiO3 on Si (001) substrate by molecular beam epitaxy. The impact of the growth temperature and the initial oxygen partial pressure on the heteroepitaxy is studied in detail using different in-situ and ex-situ characterization methods. The optimal growth condition has been identified as 360 °C with the initial oxygen partial pressure of 5 × 10− 8 Torr to achieve a high-quality single crystalline SrTiO3 film and a coherent interface between SrTiO3 and Si. The THz Infrared (IR) measurements show that the biaxial strained SrTiO3 commensurately grown on silicon undergoes a cubic-tetragonal phase transition.  相似文献   

19.
Thin films of the zinc nickel ferrite, Zn0.7Ni0.3Fe2O4 (ZNFO), were deposited by the RF magnetron sputtering on a number of substrates, including (001) oriented single crystals of LaAlO3 (LAO) and SrTiO3 (STO), polycrystalline Pt/Si, and epitaxial films of BiFeO3 (BFO) and LaNiO3 (LNO). Except for the films on Pt/Si, the ZNFO films grown on other substrates were epitaxial and their magnetic properties were affected by the heteroepitaxy induced strains. Typically, the coercivity (Hc) was increased with the strain, i.e. Hc varied from 31 Oe for the 150 nm thick polycrystalline films grown on Pt/Si, to 55 Oe and 155 Oe for the 20 nm thick epitaxial films grown on BFO and LAO, respectively. The saturation magnetization of the epitaxial films was reduced accordingly to about 470 emu/cm3 from 986 emu/cm3 in the polycrystalline films. The all-oxide architecture allowed field-annealing to perform at the temperature above the Neel temperature of BFO (~ 370 °C), after which clear exchange bias was observed.  相似文献   

20.
Epitaxial SrTiO3 (STO) films have been grown on TiN buffered Si(001) by pulsed laser deposition. The TiN layer was in situ deposited at 540, 640 or 720°C whereas the STO film was grown at a fixed temperature of 640°C. We have studied the effect of the growth temperature of TiN on the epitaxial relationship of STO/TiN heterostructures. It is found that for TiN grown at 540 or 640°C the epitaxial relationship is 001STO 001TiN, and for TiN grown at 720°C it changes to (101)STO (001)TiN and [ 01]STO [1 0]TiN (or [ 01]STO [110]TiN). This change of relationship is accompanied by a sharp reduction in the out-of-plane lattice constant of the TiN layer. Fourier transform infrared spectra show that the longitudinal optic modes are active for all the STO films, but the absorption peak associated with the transverse optic mode is observed only in the (101) oriented STO films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号