首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Homogenous, crack free iron oxide films are prepared by the sol–gel spin coating technique from a solution of iron iso-propoxide and isopropanol. The films were characterized by X-ray diffractometry (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), UV-visible (UV–Vis) spectroscopy and cyclic voltammetry (CV). XRD of the films showed that they had an amorphous structure. The optical constants refractive index (n) and extinction coefficient (k) were measured by scanning spectrometer in the wavelength range of 390–990 nm. The n and k values were found n =2.3±0.01 and k =0.2±0.002 at 650 nm. The electrochemical behavior investigated in 0.5 M LiClO4 propylene carbonate (PC) electrolyte-CV examinations showed good rechargeability of the Li+/e insertion extraction process beyond 300 cycles. Spectroelectrochemistry showed that these films exhibit weak cathodic coloration in the spectral range of 350–800 nm.  相似文献   

2.
Tungsten oxide and titanium oxide thin films were prepared by RF reactive magnetron sputter deposition. The stationary and rotating substrate holders were applied to analyze the rotating effect. The optical properties and thicknesses of oxide films were determined by a proposed optical model and the measured transmittance spectra. The dispersed refractive indices of thin films have a wide range distribution in different sputtering conditions. In the situation of rotating substrate holder, the refractive index was lower than that of the stationary substrate holder. Also, amorphous TiO2 structure can be prepared by using rotating substrate holder. The transmittance spectrum of crystalline TiO2 reveals that the textured structure on the film surface affects the transmittance characteristic.  相似文献   

3.
Cadmium oxide thin films with different percentages of aluminum doping have been synthesized via radio frequency magnetron sputtering technique. Thin films were deposited on glass and silicon substrates with different percentages of aluminum at a substrate temperature of 573 K and pressure of 0.1 mbar in Ar+O2 atmosphere. The deposited films were characterized by studying their structural, electrical and optical properties. The X-ray diffraction pattern revealed good crystallinity with preferred (1 1 1) orientation in the films. Aluminum doping in CdO thin films were confirmed by X-ray photoelectron spectroscopic studies and actual doping percentages were also measured from it. The optical band gap was found to decrease first and then increase with increasing percentages of aluminum concentrations. The electrical conductivity was found to increase with increase of aluminum doping concentration up to 5% but for higher doping concentration (>5%) the conductivity was found to decrease.  相似文献   

4.
Abstract

Aluminium doped zinc oxide (AZO) films were dynamically deposited by rf magnetron sputtering under various sputtering pressures in the range of 0·3–2·0 Pa. The effect of the Ar sputtering pressure on the structural, electrical and optical properties of the AZO films was systematically investigated by X-ray diffractometry, scanning electron microscope, four-point probe measurement and UV–vis spectrophotometer. As the sputtering pressures decrease, the crystallite sizes of the films became larger, while their deposition rate turns higher. Under the condition of lower sputtering pressures, a decrease in the resistivity was observed due to an increase in carrier concentration. The AZO film deposited at 0·5 Pa in the dynamic mode has shown the lowest resistivity of 9·5×10?4 Ω cm. This work was performed in a dynamic deposition system in order to produce a large area of AZO films, which is more important in practical fields to improve productivity.  相似文献   

5.
The In2O3-ZnO (IZO) thin films were prepared on polyethylene terephthalate substrate at room temperature by direct current (dc) magnetron sputtering. The properties of IZO thin films were studied in terms of O2 concentration and deposition parameters. As the O2 concentration in O2/Ar gas increased, the transmittances of the films were increased up to 90% and the resistivities were decreased. The systematic variation of process parameters including dc power, gas pressure and target-to-substrate distance was performed to examine the properties of the deposited films. It was disclosed that there was an optimum O2 concentration for high transmittance and low resistivity. With decrease in dc power and gas pressure and increase in target-to-substrate distance, the IZO films with high transmittance and low resistivity were obtained. The observation of the IZO films by atomic force microscopy indicated that the microstructure and surface morphology of the films were responsible for the transmittance. It was demonstrated that IZO films with a resistivity of 5.1×10−4 Ω cm and an optical transmission of 90% in the visible spectrum could be prepared at room temperature on flexible substrates.  相似文献   

6.
Electrochemical, spectroscopic and structural measurements were used to characterize the electrochromic behavior and stability of sol–gel deposited Co(OH)2 thin films. These films were prepared from polymeric solutions containing cobalt methoxyethoxide precursor by spin coating technique. The as-deposited films are amorphous and show crystalline structure after heat treatment at 450°C. Sol–gel-deposited cobalt hydroxide films show reversible electrochromic response in 1 M LiClO4/ propylene carbonate solution beyond 500 cycles. The structural and chemical properties of the films were investigated by X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy. Spectral transmittance change was Tp=29.9–60.2% for cobalt hydroxide films. It is argued that reversible lithium insertion capacity, good cyclic reversibility of Co(OH)2 films make them suitable as counterelectrode layers in the electrochromic devices.  相似文献   

7.
Electrochromic iridium oxide (IrOx) and iridium-tantalum oxide (IrTaOx) thin films were prepared by sputtering. Complex refractive indices were determined for samples deposited on indium-tin oxide covered glass in different colouration states, and for as-deposited samples on sapphire and Corning glass. The refractive index was found to be practically constant for both IrOx (∼1.3) and IrTaOx (∼2). The extinction coefficient was found to vary between the coloured and bleached states with ∼35% for IrOx and ∼55% for IrTaOx at 660 nm. This is believed to be a result of the removal of intraband transitions within the Ir t2g band during bleaching.  相似文献   

8.
ITO:Zr thin films were deposited on glass substrates by co-sputtering with an ITO target and a zirconium target. The experiment parameters such as substrate temperature and oxygen flow rate have an important influence on the properties of ITO:Zr thin films. XRD spectra and AFM reveal the crystalline structure and surface roughness of ITO:Zr thin films. Better optical–electrical characteristics of the films can be achieved at low substrate temperatures, and the increasing substrate temperature remarkably improves the optical–electrical characteristics of the films. Certain oxygen flow rates can enhance the properties of ITO:Zr thin films, but excessive oxygen can worsen the optical–electrical characteristics. The obvious Burstin–Moss effect can be revealed by the transmittance spectra with different parameters, and the direct transition models show the change of optical band gap. As the optimum parameters are selected, ITO:Zr thin films with sheet resistance of 10–20 Ω/sq and optical transmittance of beyond 85% (including glass substrates) can be obtained.  相似文献   

9.
Vanadium dioxide films were prepared by DC and rf reactive magnetron sputtering of a 99.7% pure vanadium target in an Ar+O2 plasma with a well-controlled oxygen partial pressure. The films were deposited onto normal glass substrates at 400°C. The films showed a metal–semiconductor transition at the temperature, τc=65–68°C. Optical and electrical properties of the films were investigated around the metal–semiconductor phase transition and found to be very sensitive to the oxygen flow rate. Sheet resistance of the films were recorded using a two-point probe over the temperature range 26τ100°C. It was observed that the sheet resistance can change by three orders of magnitude when heating the films from room temperature to temperatures above the transition. Transmittance of the films was obtained in the 300λ2500 nm wavelength range at two extreme temperatures (i.e. 26°C and 100°C). The luminous transmittance for the films was rather unaffected with heating, whereas near-infrared transmittance showed lower values. Optical constants, n and k were measured using ellipsometry. The semiconducting state optical constants were found to be 2.67 and 0.04 for n and k, respectively, while the metallic state values were 2.26 for refractive index and 0.3 for the extinction coefficient. The samples showed a slow deterioration when left in the laboratory for a period of one year.  相似文献   

10.
Mo2C, which has a unique electronic structure similar to the electronic structure of Pt, is considered as the material with the greatest potential to replace Pt as a catalyst for the electrocatalytic hydrogen evolution reaction (HER). However, Mo2C thin films have not attracted enough attention in the field of electrocatalysis. This work proposes a method for preparing Mo2C thin films as a catalyst for electrocatalytic HER through radiofrequency magnetron sputtering. The HER activity of the Mo2C thin film in acidic and alkaline media is studied by changing the deposition power of the Mo2C target and doping Ni for structural modification. Results show that increasing the deposition power of Mo2C can significantly enhance the HER activity of the films in acidic and alkaline media, and metal Ni doping can further enhance the HER activity of the Mo2C films. In an alkaline environment at a current density of 10 mA cm−2, the films demonstrate an overpotential of as low as 163 mV with a Tafel slope of 107 mV·dec−1. In acidic media, the films present the corresponding overpotential of 201 mV and a Tafel slope of as low as 96 mV·dec−1. Moreover, the Ni-doped Mo2C films have excellent HER stability. The synergy between doped Ni and Mo vacancies optimizes the strength of the Mo–H bond and the adsorption and desorption equilibrium of active H, thus enhancing HER kinetics. This work guides the possible structural design of Mo2C thin films for electrocatalytic HER.  相似文献   

11.
Spectrally selective TiAlN/AlON tandem absorbers were deposited on copper and stainless steel substrates using a reactive DC/RF magnetron sputtering system. The compositions and thicknesses of the individual component layers were optimized to achieve high absorptance (α=0.931-0.942) and low emittance (ε=0.05-0.06) on copper substrate. The experimental spectroscopic ellipsometric data have been fitted with the theoretical models to derive the dispersion of the optical constants (n and k). In order to study the thermal stability of the tandem absorbers, they were subjected to heat treatment (in air and vacuum) for different durations and temperatures. The tandem absorber deposited on Cu substrates exhibited high solar selectivity (α/ε) of 0.946/0.07 even after heat treatment in air up to 600 °C for 2 h. At 625 °C, the solar selectivity decreased significantly on Cu substrates (e.g., α/ε=0.924/0.30). The tandem absorber on Cu substrates was also stable in air up to 100 h at 400 °C with a solar selectivity of 0.919/0.06. Studies on the accelerated aging tests indicated that the activation energy for the degradation of the tandem absorber is of the order of 100 kJ/mol.  相似文献   

12.
Nickel oxide films have been deposited from nickel acetate precursor using a sol-gel dip coating method, onto glass and conducting fluorine doped tin oxide (FTO) glass substrate. The direct energy gap (Egd) values for the 2-10 layered films are in the range of 3.62 eV-3.72 eV. X-ray diffraction (XRD) analysis reveals that films consisting of 2-6 layers are amorphous, while films consisting of 8-10 layers are poly-crystalline with cubic grains of around 12 nm-20 nm and preferential growth along the (1 1 1) and (2 0 0) planes. Fourier Transform Infrared (FTIR) spectrum confirms the formation of Ni-O. Electrochromic properties of the nickel oxide coatings were studied using cyclic voltammetric (CV) technique. The 8 layered NiO films exhibit the anodic/cathodic diffusion coefficient of 16.7/5.73 × 10−13 cm2/s and the change in optical transmission is ΔT630nm = 53% with a photopic contrast ratio of 2.87.  相似文献   

13.
In this work we present the main results of the optical properties study of amorphous carbon nitride (a-C:N) thin films prepared by reactive radio frequency (RF) sputtering. The a-C:N films were deposited, at room temperature, onto glass substrates, from a graphite target, in a pure nitrogen plasma. During the deposition, the pressure of nitrogen and the power density were maintained at 10−2 mbar and 0.79 W cm−2, respectively. Optical properties of these films were deduced from optical transmission spectra in the ultraviolet–visible–near infrared (UV–Vis–NIR) range. The refractive index follows well the Cauchy law with an extrapolated value of 1.68 in the far IR region. The optical band gap of the a-C:N films is about 1.2 eV. This value is relatively high in comparison with that of amorphous carbon films (0.8 eV) obtained in similar conditions. The incorporation of nitrogen in the amorphous carbon network leads to an increase of the optical band gap.  相似文献   

14.
We report the characteristics of Ga-doped zinc oxide (GZO) films prepared by a highly efficient cylindrical rotating magnetron sputtering (CRMS) system as a function of substrate temperature for use as a transparent conducting electrode in bulk hetero-junction organic solar cells (OSCs). Using a rotating cylindrical GZO target, low sheet resistance (∼11.67 Ω/square) and highly transparent (90%) GZO films were deposited with high usage (∼80%) of the cylindrical GZO target. High usage of the cylindrical GZO target in the CRMS system indicates that CRMS is a promising deposition technique to prepare cost-efficient GZO electrodes for low cost OSCs. Resistivity and optical transmittance of the CRMS-grown GZO film were mainly affected by substrate temperature because the grain size and activation of the Ga dopant were critically dependent on the substrate temperature. In addition, the performance of OSC fabricated on GZO electrode sputtered at 230 °C (11.67 Ω/square) is better than OSC fabricated on as-deposited GZO electrode (29.20 Ω/square). OSCs fabricated on the GZO electrode sputtered at 230 °C showed an open circuit voltage of 0.558 V, short circuit current of 8.987 m A/cm2, fill factor of 0.628 and power conversion efficiency of 3.149%.  相似文献   

15.
Thin films of tungsten oxide (WO3) were deposited onto glass, ITO coated glass and silicon substrates by pulsed DC magnetron sputtering (in active arc suppression mode) of tungsten metal with pure oxygen as sputter gas. The films were deposited at various oxygen pressures in the range 1.5×10−2−5.2×10−2 mbar. The influence of oxygen sputters gas pressure on the structural, optical and electrochromic properties of the WO3 thin films has been investigated. All the films grown at various oxygen pressures were found to be amorphous and near stoichiometric. A high refractive index of 2.1 (at λ=550 nm) was obtained for the film deposited at a sputtering pressure of 5.2×10−2 mbar and it decreases at lower oxygen sputter pressure. The maximum optical band gap of 3.14 eV was obtained for the film deposited at 3.1×10−2 mbar, and it decreases with increasing sputter pressure. The decrease in band gap and increase in refractive index for the films deposited at 5.2×10−2 mbar is attributed to the densification of films due to ‘negative ion effects’ in sputter deposition of highly oxygenated targets. The electrochromic studies were performed by protonic intercalation/de-intercalation in the films using 0.5 M HCl dissolved in distilled water as electrolyte. The films deposited at high oxygen pressure are found to exhibit better electrochromic properties with high optical modulation (75%), high coloration efficiency (CE) (141.0 cm2/C) and less switching time at λ=550 nm; the enhanced electrochromism in these films is attributed to their low film density, smaller particle size and larger thickness. However, the faster color/bleach dynamics is these films is ascribed to the large insertion/removal of protons, as evident from the contact potential measurements (CPD) using Kelvin probe. The work function of the films deposited at 1.5 and 5.2×10−2 mbar are 4.41 and 4.30 eV, respectively.  相似文献   

16.
Polycrystalline WO3 thin films were fabricated by reactive magnetron sputtering at a substrate temperature of 350 °C under different Ar/O2 gas pressures. In order to study the thickness dependence of photoelectrochemical (PEC) behavior of WO3, the thickness-gradient films were fabricated and patterned using a micro-machined Si-shadow mask during the deposition process. The variation of the sputter pressure leads to the evolution of different microstructures of the thin films. The films fabricated at 2 mTorr sputter pressure are dense and show diminished PEC properties, while the films fabricated at 20 mTorr and 30 mTorr are less dense and exhibit enhanced water photooxidation efficiency. The enhanced photooxidation is attributed to the coexistence of porous microstructure and space charge region enabling improved charge carrier transfer to the electrolyte and back contact. A steady-state photocurrent as high as 2.5 mA cm−2 at 1 V vs. an Ag/AgCl (3 M KCl) reference electrode was observed. For WO3 films fabricated at 20 mTorr and 30 mTorr, the photocurrent increases continuously up to a thickness of 600 nm.  相似文献   

17.
TiO2 thin films were deposited by DC Sputtering varying the deposit time. These films were characterized by XRD, AFM, photoluminescence, UV–Vis, ellipsometry and XPS. The optical properties of TiO2 thin films with different thickness, influenced their photocatalytic behavior in two photoinduced process. When TiO2 thin films were irradiated with a UV light, midgap states were generated and the electrons were placed in lower energies than its band gap, favoring the photocatalytic hydrogen production and CO2 photoreduction. From PL technique analyses it was observed that electrons occupied midgap states between the bands, with lower energies than the band gap. With these results it was possible to propose an energy diagram in order to correlate with photoinduced processes results. The presence of Ti3+ species was reconfirmed by means of XPS analyses. These species could be found in the midgap states, generated by the interaction between the UV irradiation and the film surface, which contributed to the photocatalytic activity of the films. The hydrogen production was similar for all the thin films studied (33–35 μmol) associated to the presence of similar energy midgap states. In the case of CO2 photoreduction, all films produced CH2O (8951 and 6252 μmol/g) and the films with a thickness of 330 and 420 nm generated CH3OH (970 and 292 μmol/g). The extinction coefficient confirmed the XRD results for the film with greatest deposited time, which exhibited the highest crystallinity. All photocatalytic results did not show any dependence with the thin film thickness.  相似文献   

18.
Due to easiness of preparation and high energy density, V2O5 nanocrystalline thin films are particularly attractive as cathode materials for all-solid-state rechargeable lithium microbatteries. However, their electrochemical performances are strictly related to the film microstructure, which, in turn, is related to the nature and parameters of the deposition technique. For this reason, the preparation of thin films with reproducible electrochemical properties is still an open problem.Here, we report on the deposition of V2O5 crystalline thin films by means of reactive radiofrequency (r.f.) magnetron sputtering, using vanadium metal as the target. Different deposition times and substrate temperatures were adopted. X-ray powder diffraction (XRD) and atomic force microscopy were used to investigate the structural and morphological features of the films. In particular, XRD analysis revealed that the deposition parameters affect the crystallographic orientation of the films. A h 0 0 orientation is observed in case of thin samples (about 100 nm) prepared at 300 °C, whereas a 1 1 0 preferential growth is obtained for thicker films. Films deposited at 500 °C display a 0 0 1 orientation irrespective on the deposition time.Reversible Li intercalation/deintercalation processes and high specific capacity are observed for the h 0 0-oriented V2O5 thinner films, with the ab plane arranged perpendicular to the substrate. In this case, the cycling behaviour is very promising, and a stable capacity higher than 300 mAh g−1 was delivered in the potential range 3.8-1.5 V at 1C rate over at least 70 cycles.  相似文献   

19.
ZnO thin films were deposited with RF sputtering using pure Zn target. In order to generate oxidation process of Zn, Ar:O2 gas mixing in (9:1), (7:3) and (5:5) ratios of Ar:O2 was used. To characterize ZnO thin films thickness and transparency were measured using optical method, and refractive index and band gap energies were calculated. Electrical conductivity of the ZnO thin films was also determined. AFM images were used to determine surface morphology of produced ZnO thin films.  相似文献   

20.
Thin films of tungsten oxide, molybdenum oxide and mixed MoO3–WO3 oxides were obtained by atmospheric pressure chemical vapor deposition (CVD). All the films were prepared using identical technological parameters and through investigation of the optical properties of as deposited and annealed at 400°C a comparative study is reported. Raman, IR and VIS spectrophotometry and spectral ellipsometry methods were used. The mixed MoO3–WO3 films have higher optical absorption with maxima at a closer position with respect to the human eye sensitivity peak at 2.5 eV. The observed electrochromic effect is better expressed in the mixed films; the electrical charge inserted is higher.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号