首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
The development of extremely active bifunctional non-noble electrocatalysts for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is pivotal for water splitting but remains challenging. Herein, self-supported Ni–Fe–Sn electrocatalysts were fabricated on nickel foam (NF) through a simple and facile pulse electrodeposition process. Under optimal conditions, the prepared Ni–Fe–Sn electrocatalysts exhibited excellent bifunctional properties in alkaline medium and required ultralow overpotentials of only 27 and 201 mV for HER and OER, respectively, to reach the current density of 10 mA cm?2. Importantly, the same Ni–Fe–Sn electrocatalyst can be assembled as the anode and the cathode in a two-electrode system. It demanded a fairly low applied voltage of 1.55, 1.72, and 1.87 V to produce 10, 50, and 100 mA cm?2, respectively, and exhibited excellent long-term stability. The excellent electrocatalytic water splitting performance of the Ni–Fe–Sn film was mainly associated with its intrinsic catalytic activity derived from the modulation of the electronic structures among Ni, Fe, and Sn by using the appropriate atomic ratio of Ni: Fe: Sn.  相似文献   

2.
By increasing demand for hydrogen and oxygen gas for energy and industrial applications, designing a cheap, high-efficiency, and bifunctional electrocatalyst for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) seems necessary. For this purpose Ni–Mo–Fe as a bifunctional electrocatalyst was synthesized by one-step electrodeposition. From this electrocatalyst with optimal composition and current density, a small overpotential of 65, 161 mV for delivering 10, 100 mA/cm2 on HER in alkaline media was achieved. As-fabricated electrode exhibited 344,408 mV for delivering 10, 100 mA/cm2 in OER. Furthermore, this electrocatalyst shows high stability and negligible degradation in overpotential for HER and OER under long term stability tests in alkaline media. The notable function of As-fabricated Ni–Mo–Fe is due to the synergism effect between Ni, Mo, and Fe element and binder-free structure. Owing to the high-performance and high-stability of Ni–Mo–Fe electrocatalyst under Hydrogen and Oxygen evolution reactions is a candidate for industrial uses in the alkaline electrolyzer.  相似文献   

3.
The rational design of non-precious-metal bifunctional catalysts of oxygen and hydrogen evolution reactions that generate a high current density and stability at low over potentials is of great significance in the field of water electrolysis. Herein, we report a facile and controllable method for the in-situ growth of urchin-like FeOOH–NiOOH catalyst on Ni foam (FeOOH–NiOOH/NF). X-ray photoelectron spectroscopy confirms that the proportion of Ni and Fe species with high valence state gradually increase with the extension of growth time. Electrochemical studies have shown that the optimized FeOOH–NiOOH/NF-24 h and −12 h catalysts demonstrate excellent electrochemical activity and stability in oxygen/hydrogen evolution reactions. Moreover, the cell voltage is reduced around 0.15 V at high current density (0.5–1.0 A cm−2) as compared to the state-of the art RuO2/NF(+)||Pt–C/NF(−) system, far better than most of the previously reported catalysts. The cost analyst revealed that using FeOOH–NiOOH/NF catalyst as both electrodes could potentially reduce the price of H2 around 7% compared with traditional industrial electrolyzers. These excellent electrocatalytic properties can be attributed to the unique urchin-like structure and the synergy between Ni and Fe species, which can not only provide more active sites and accelerate electron transfer, but also promote electrolyte transport and gas emission.  相似文献   

4.
Design of inexpensive and highly efficient bifunctional electrocatalyst is paramount for overall water splitting. In this study, amorphous Ni–Fe–P alloy was successfully synthesized by one-step direct-current electrodeposition method. The performance of Ni–Fe–P alloy as a bifunctional electrocatalyst toward both hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) was evaluated in 30 wt% KOH solution. It was found that Ni–Fe–P alloy exhibits excellent HER and OER performances, which delivers a current density of 10 mA cm?2 at overpotential of ~335 mV for HER and ~309 mV for OER with Tafel slopes of 63.7 and 79.4 mV dec?1, respectively. Moreover, the electrolyzer only needs a cell voltage of ~1.62 V to achieve 10 mA cm?2 for overall water splitting. The excellent electrocatalytic performance of Ni–Fe–P alloy is attributed to its electrochemically active constituents, amorphous structure, and the conductive Cu Foil.  相似文献   

5.
Fabrication of multicomponent materials is the most effective strategy to develop high-performance multifunctional catalysts. In this work, a series of bimetallic Fe–Co chalcogenophosphates were facilely prepared and used as bifunctional water electrolysis catalysts. The results have shown that the obtained catalysts showed high performances for hydrogen and oxygen evolution reactions, and overall water splitting. For the optimum catalyst, only 260 and 365 mV of overpotential for HER and OER, and 1.59 V of cell voltage for water splitting was needed respectively in 1 M KOH when 10 mA cm?2 of current density was reached. High stability and Faraday efficiency were also obtained, and the obtained results confirm that the catalyst is competitive in application in water electrolysis.  相似文献   

6.
Constructing high-efficient and nonprecious electrocatalysts is of primary importance for improving the efficiency of water splitting. Herein, a novel sunflower plate-like NiFe2O4/CoNi–S nanosheet heterostructure was fabricated via facile hydrothermal and electrodeposition methods. The as-fabricated NiFe2O4/CoNi–S heterostructure array exhibits remarkable bifunctional catalytic activity and stability toward oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media. It presents a small overpotential of 219 mV and 149 mV for OER and HER, respectively, to produce a current density of 10 mA cm?2. More significantly, when the obtained electrodes are used as both the cathode and anode in an electrolyzer, a voltage of 1.57 V is gained at 10 mA cm?2, with superior stability for 72 h. Such outstanding properties are ascribed to: the 3D porous network structure, which exposes more active sites and accelerates mass transfer and gas bubble emission; the high conductivity of CoNi–S, which provides faster charge transport and thus promotes the electrocatalytic reaction of the composites; and the effective interface engineering between NiFe2O4 (excellent performance for OER) and CoNi–S (high activity for HER), which leads to a shorter transport pathway and thus expedites electron transfer. This work provides a new strategy for designing efficient and inexpensive electrocatalysts for water splitting.  相似文献   

7.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   

8.
The synthesis of high performance and economical electrocatalysts in the process of overall water splitting is very important for the production of hydrogen energy and has become one of the most important challenges. Here, various Ni, Ni–Fe, Ni–Mn nanosheets and Ni–Fe–Mn ternary nanosheets were created using cost-effective, versatile and binder-free electrochemical deposition methods, and the electrocatalytic activity of various electrodes for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) were investigated in an alkaline environment. Due to the high electrochemical active surface area due to the fabrication of nanosheets, the synergistic effect between different elements on the electronic structure, the high wettability due to the formation of nanosheets and the quick detachment of formed gasses from the electrode, the Ni–Fe–Mn nanosheets electrode showed excellent electrocatalytic activity. In order to deliver the 10 mA cm−2 current density in HER and OER processes, this electrode required values of 64 mV and 230 mV overpotential, respectively. Also, the stability test showed that after 10 h of electrolysis at a current density of 100 mA cm−2, the overpotential changes was very small (less than 4%), indicating that the electrode was excellent electrostatic stability. Also, when using as a bi-functional electrode in the full water splitting system, it only needed a cell voltage of 1528 V to deliver a current of 10 mA cm−2. The results of this study indicate a new strategy for the synthesis of active and stable electrocatalysts.  相似文献   

9.
Developing an effective and low-cost bifunctional electrocatalyst for both OER and HER to achieve overall water splitting is remaining a challenge to meet the needs of sustainable development. Herein, an electroless plating method was employed to autogenous growth of ultrathin Ni–Fe2B nanosheet arrays on nickel foam (NF), in which the whole liquid phase reduction reaction took no more than 20 min and did not require any other treatments such as calcination. In 1.0 M KOH electrolyte, the resulted Ni–Fe2B ultrathin nanosheet displayed a low overpotential of 250 mV for OER and 115 mV for HER to deliver a current density of 10 mA cm?2, and both OER and HER activities remained stable after 26 h stability testing. Further, the couple electrodes composed of Ni–Fe2B could afford a current density of 10 mA cm?2 towards overall water splitting at a cell voltage of 1.64 V in 1.0 M KOH and along with excellent stability for 26 h. The outstanding electrocatalytic activities can be attributed to the synergistic effect of electron-coupling across Ni and Fe atoms and active sites exposed by large surface area. The effective combination of low cost and high electrocatalytic activity brings about a promising prospect for Ni–Fe2B nanosheet arrays in the field of overall water splitting.  相似文献   

10.
With the serious intensification of energy shortage and greenhouse effect, people begin to look for the sustainable energy sources to replace fossil energy sources. Herein, self-supporting expanded graphite sheet (SSEGS) was developed as an ideal catalyst support through electrochemically intercalating flexible graphite sheet in alkaline solution. Electroless deposition was employed to synthesize Ni–Cu–P alloy on SSEGS and then an amorphous NiFe hydroxide/Ni–Cu–P/SSEGS (NiFe–OH/Ni–Cu–P/SSEGS) composite catalyst was further constructed through electrodeposition. Benefitting from the unique structural advantage of SSEGS and the synergistic effect between two amorphous Ni-based materials (Ni–Cu–P alloy and NiFe–OH), the resulting electrode exhibited superior bifunctional electrocatalytic performance in 1 M KOH. For H2 evolution reaction and O2 evolution reaction, the NiFe–OH/Ni–Cu–P/SSEGS composite catalyst could reach 10 mA cm−2 at low overpotentials of 75 and 240 mV, respectively. Remarkably, the two-electrode system driven by NiFe–OH/Ni–Cu–P/SSEGS as the anode and cathode could afford 10 mA cm−2 at a low cell voltage of 1.56 V vs. RHE. And after the 12 h stability test, the cell voltage at 10 mA cm−2 increased by only 7 mV, indicating that the two-electrode system had excellent stability. The preparation of NiFe–OH/Ni–Cu–P/SSEGS material with superior bifunctional electrocatalytic performance has a significance influence to the development and expansion of hydrogen production technology.  相似文献   

11.
It is essential that the development of efficient and excellent stability electrocatalysts for water oxidation, which could covert effectively renewable electricity to chemical energy. Herein, it is fabricated firstly in situ that a novel Au–Bi anode oxygen-evolving catalyst with an outstanding catalytic performance for water splitting by electrolytic deposition from dilute AuCl4 solutions in potassium tetraborate electrolyte at pH 11. The H2 generated for water splitting rate of the Au–Bi is 116.38 μmol cm−2 h−1 and the Faradaic efficiency reaches 90.43% in 0.1 M tripotassium phosphate solution. Moreover, the main active component of the Au–Bi is gold oxide (Au2O3). What is more, this work expands the research on Au-based oxygen-evolving catalysts and provides increased insight into water splitting.  相似文献   

12.
The exploration of highly efficient non-precious electrocatalysts is essential for water splitting devices. Herein, we synthesized CoS2–MoS2 multi-shelled hollow spheres (MSHSs) as efficient electrocatalysts both for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) using a Schiff base coordination polymer (CP). Co-CP solid spheres were converted to Co3O4 MSHSs by sintering in air. CoS2–MoS2 MSHSs were obtained by a solvothermal reaction of Co3O4 MSHSs and MoS42− anions. CoS2–MoS2 MSHSs have a high specific surface area of 73.5 m2g-1. Due to the synergistic effect between the CoS2 and MoS2, the electrode of CoS2–MoS2 MSHSs shows low overpotential of 109 mV with Tafel slope of 52.0 mV dec−1 for HER, as well as a low overpotential of 288 mV with Tafel slope of 62.1 mV dec−1 for OER at a current density of 10 mA cm−2 in alkaline solution. The corresponding two-electrode system needs a potential of 1.61 V (vs. RHE) to obtain anodic current density of 10 mA cm−2 for OER and maintains excellent stability for 10 h.  相似文献   

13.
The synthesis of cost-effective and high-performance electrocatalysts for water splitting is the main challenge in electrochemical hydrogen production. In this study, we adopted a high throughput method to prepare bi-metallic catalysts for oxygen/hydrogen evolution reactions (OER/HER). A series of Ni–Mo alloy electrocatalysts with tunable compositions were prepared by a simple co-sputtering method. Due to the synergistic effect between Ni and Mo, the intrinsic electrocatalytic activity of the Ni–Mo alloy electrocatalysts is improved, resulting in excellent HER and OER performances. The Ni90Mo10 electrocatalyst shows the best HER performance, with an extremely low overpotential of 58 mV at 10 mA cm?2, while the Ni40Mo60 electrocatalyst shows an overpotential of 258 mV at 10 mA cm?2 in OER. More significantly, the assembled Ni40Mo60//Ni90Mo10 electrolyzer only needs a cell voltage of 1.57 V to reach 10 mA cm?2 for overall water splitting.  相似文献   

14.
Iridium-based bimetallic alloy system with unique performance is of great interest for high-temperature corrosive environment as a barrier layer or for water splitting of hydrogen/oxygen evolution reactions as a highly efficient and stable electrocatalyst. In this work, iridium-cobalt (Ir–Co) thin films were galvanostatically electrodeposited on a copper (Cu) foam electrode as an electrocatalyst for water splitting in 1.0 M KOH alkaline medium. The effects of loading and solution temperature on hydrogen evolution performance of Ir–Co deposits were investigated. The results show that Ir–Co deposits were adhered to substrates, with porous structure and hollow topography. The concentrations of Ir in the deposits with the loadings of 4.6, 3.2 and 0.8 mg·cm?2 were 88, 88 and 75 wt%, respectively. Ir–Co deposit with the loading of 3.2 mg·cm?2 required an overpotential of 108 mV for hydrogen evolution reaction to reach a current density of 30 mA cm?2, having a low Tafel slope value of 36 mV·dec?1. The changes in the solution temperature and catalyst loading had a significant effect on hydrogen evolution performance of Ir–Co/Ir–Co–O electrocatalysts. With the increasing of catalyst loading, the electrocatalytic activity increased firstly and then decreased. As the solution temperature was increased from 20 to 40 °C, the electrocatalytic activity of Ir–Co–O electrocatalyst increased, and then decreased with the rising of temperature. The apparent thermal activation energy obtained from Arrhenius plot was ~13.9 kJ mol?1. Ir–Co/Ir–Co–O deposits exhibited relatively good electrocatalytic stability and durability. The present work demonstrates a possible pathway to develop a highly active and durable substitute for thin film electrocatalysts for water splitting of hydrogen evolution reaction.  相似文献   

15.
It is of great significance to explore and design low-cost and efficient electrocatalysts for the storage and conversion of intermittent renewable resources to clean hydrogen by water splitting. Herein, the amorphous Ni–Fe–S electrocatalysts are rapidly synthesized on Cu sheets and Ni foams using the simple electrodeposition method. After optimizing the S concentration, the Ni–Fe–S electrocatalysts exhibit the simultaneously boosted hydrogen and oxygen evolution reaction performances compared to the as-synthesized Ni–Fe and Ni. In addition, the Ni–Fe–S electrocatalysts as the bifunctional electrodes only require a cell voltage of 1.584 V (on Ni foam) and 1.705 V (on Cu sheet) to reach 10 mA/cm2 with excellent stability in the electrocatalytic activity and surface properties. The results exhibit that the enhanced electrocatalytic activity can be attributed to the role of the doped S in formatting the amorphous structure, improving the hydrophilic and aerophobic properties, optimizing the electronic structure as well as enhancing the electrochemically active sites. This work might offer a new insight into the design of the cheap and highly efficient electrodes for generation of hydrogen by water splitting.  相似文献   

16.
Ni–Fe–Sn electrocatalyst supported on nickel foam (Ni–Fe–Sn/NF) with high efficiency of hydrogen evolution reaction (HER) has been successfully fabricated through one-step potentiostatic electrodeposition route. The optimized Ni–Fe–Sn/NF displayed an extremely low overpotential of, respectively, 144 and 180 mV at 50 and 100 mA cm?2 for HER in alkaline condition. Moreover, it could retain its superior stability for at least 12 h. The remarkable electrocatalytic activity of our electrocatalyst is ascribed to the high conductivity originated from synergistic effects between Ni, Fe, and Sn during HER process.  相似文献   

17.
Electrochemistry splitting of water is considered to be one of the most fascinating methods to replace traditional chemical fuels. Here, we design a new method to exploit W–Co3S4@Co3O4 heterostructures. The W–Co3S4@Co3O4 material was first prepared and grown in situ on nickel foam by a typical hydrothermal and calcination approach. Based on the principle of electronic regulation, the synergistic effect of W and Co metal ions can increase the charge transfer of the electrode, thus significantly prompting the catalytic activity of the electrode. The W–Co3S4@Co3O4 material present superior catalytic performance for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), and the overpotential at 10 mA cm−2 is 260 mV and 140 mV, respectively. Notably, W–Co3S4@Co3O4 catalyst showed excellent water splitting performance under alkaline conditions (cell voltage of 1.63V @10 mA cm−2). Density functional theory calculation shows that the existence of the Co3O4 material accelerates the rate of hydrogen production reaction, and the existence of the W–Co3S4 material promotes the conductivity of the W–Co3S4@Co3O4 electrode. The synergistic effect of W–Co3S4 and Co3O4 materials is beneficial to the improvement of the catalytic activity of the electrode. This study provides a novel view for the development of electrodes synthesis and a novel paradigm for the development of robust, better and relatively non-toxic bifunctional catalysts.  相似文献   

18.
Iron-nitrogen-carbon (Fe–N–C) electrocatalysts offer great promise to replace their noble metal-based counterparts for oxygen reduction reactions (ORR). However, the practical applications of this type of catalyst are hindered by insufficient accessible active sies, low electrical conductivity, and poor durability. Here, we report a Ti3C2 MXene supported metal-organic framework (MOF)-derived Fe–N–C (Fe-Nx/N/Ti3C2) catalyst to simultaneously address the issues. Owing to the negatively charged characteristics, NH2-MIL-53(Fe) is firmly anchored on Ti3C2 MXene, which not only serves as a conductive substrate to alleviate the collapse and agglomeration of MOFs during the pyrolysis, but also modulates the electronic properties of active FeNx sites to improve the electrocatalytic activity and stability. As a result, the as-prepared Fe-Nx/N/Ti3C2 catalyst exhibits superb ORR activity and long-term stability in both alkaline and acidic electrolytes.  相似文献   

19.
Replacement of precious platinum (Pt) or ruthenium oxide (RuO2) catalysts with efficient, cheap and durable electrocatalysts from earth-abundant elements bifunctional alternatives would be significantly beneficial for key renewable energy technologies including overall water splitting and hydrogen fuel cells. Despite tremendous efforts, developing bifunctional catalysts with high activity at low cost still remain a great challenge. Here, we report a nanomaterial consisting of core-shell-shaped Fe–Co3O4 grown on carbon nanotubes (Fe–Co3O4/CNTs) and employed as a bifunctional catalyst for the simultaneous electrocatalysts on oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). The Fe–Co3O4/CNTs electrocatalyst outperforms the commercial RuO2 catalyst in activity and stability for OER and approaches the performance of Pt/C for HER. Particularly, it shows superior electrocatalytic activity with lowering overpotentials of 120 mV at 10 mA cm?2 for HER and of 300 mV at 10 mA cm?2 for OER in 1 M KOH solution. The superior catalytic activity arises from unique core-shell structure of Fe–Co3O4 and the synergetic chemical coupling effects between Fe–Co3O4 and CNTs.  相似文献   

20.
The development of electrode materials with simple preparation, favorable price, excellent electrocatalytic activity, and stability are some of the most important issues in the field of electrochemistry. Herein, we prepared Ni–Co/Ni–Co–O–P cotton flower like on a copper sheet (CS) by a convenient, efficient, and scalable electrodeposition method. The Ni–Co/Ni–Co–O–P was employed as effective binder free electrode material in two different applications such as electrocatalytic water splitting and acetaminophen (APAP) sensor. Remarkably, the Ni–Co/Ni–Co–O–P@CS exhibits low overpotentials of 310 and 90 mV at 10 mA cm?2 for oxygen and hydrogen evolution reactions in alkaline media, respectively. Besides, the Ni–Co/Ni–Co–O–P@CS || Ni–Co/Ni–Co–O–P@CS couple needs a low cell voltage of 1.62 V to achieve a current density of 10 mA cm?2, and its potential change is negligible after 20 h of continuous operation. Furthermore, Ni–Co/Ni–Co–O–P displays good electrochemical sensing performance toward APAP with a high sensitivity of 803.74 μA mM?1cm?2, low limit of detection of 0.16 μM, a wide linear range of 0.05 mM–3 mM, and a fast response time of 3.3 s. This work proposes a simple approach for synthesis of Ni–Co/Ni–Co–O–P as an efficient electrode material for water splitting and APAP sensing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号