首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reports the synthesis of high temperature proton conductors based on zirconium phosphate and imidazolium-based ionic liquids. This material is evaluated for high temperature proton exchange membrane fuel cells applications operating at 200 °C. The characterization results show high proton conductivity, enhanced water uptake properties, changes in structure, and exfoliation in zirconium phosphates crystal layers upon the introduction of the ionic liquid. The proton conductivity results demonstrate that there is an optimum amount of ionic liquid that can be introduced into zirconium phosphates to enhance its conductivity beyond which, the conductivity starts to decrease. At the optimum conditions, the addition of ionic liquids enhances the proton conductivity of the zirconium phosphates material by orders of magnitude. The results show a high proton conductivity the order of 10?2 S cm?1 at room temperature and high anhydrous proton conductivity of 10?4 S cm?1 at 200 °C. These findings indicate that the zirconium phosphate-ionic liquid material has a great potential as solid proton conductors for fuel cells applications operating at elevated temperatures.  相似文献   

2.
This work describes the synthesis and evaluation of nanocomposite membranes based on calcium phosphate (CP)/ionic liquids (ILs) for high-temperature proton exchange membrane (PEM) fuel cells. Several composite membranes were synthesized by varying the mass ratios of ILs with respect to the CP and all supported on porous polytetrafluoroethylene (PTFE). The membranes exhibit high proton conductivities. Two ionic liquids were investigated in this study, namely, 1-Hexyl-3- methylimidazolium tricyanomethanide, [HMIM][C4N3], and 1-Ethyl-3-methylimidazolium methanesulfonate, [EMIM][CH3O3S]. At room temperature, the CP/PTFE/[HMIM][C4N3] composite membrane possessed a high proton conductivity of 0.1 S cm−1. When processed at 200 °C, and fully anhydrous conditions, the membrane showed a conductivity of 3.14 × 10−3 S cm−1. Membranes based on CP/PTFE/[EMIM][CH3O3S] on the other hand, had a maximum proton conductivity of 2.06 × 10−3 S cm−1 at room temperature. The proton conductivities reported in this work appear promising for the application in high-temperature PEMFCs operated above the boiling point of water.  相似文献   

3.
Proton conducting membranes are the most crucial part of energy generating electrochemical systems such as polymer electrolyte membrane fuel cells (PEMFCs). In this work, Nafion based proton conducting anhydrous composite membranes were prepared via two different approaches. In the first, commercial Nafion115 and Nafion112 were swelled in the concentrated solution of azoles such as 1H-1,2,4-triazole (Tri), 3-amino-1,2,4-triazole (ATri) and 5-aminotetrazole (ATet) as heterocyclic protogenic solvents. In the second, the proton conducting films were cast from the Nafion/Azole solutions. The partial protonation of azoles in the anhydrous membranes were studied by Fourier transform infrared (FT-IR) spectroscopy. Thermal properties were investigated via thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). TGA results showed that Nafion/ATri and Nafion/ATet electrolytes are thermally stable at least up to 200 °C. Methanol permeability measurements showed that the composite membranes have lower methanol permeability compared to Nafion112. Nafion115/ATri system has better conductivity at 180 °C, exceeding 10−3 S/cm compared to other Nafion/heterocycle systems under anhydrous conditions.  相似文献   

4.
Operating proton exchange membrane fuel cells (PEMFCs) at higher temperatures (above the boiling point of water) offer several advantages. It enhances the electrodes' kinetics, allows the recovery of useful heat, and offers better water management due to the formation of water in the vapor phase. There is a crucial need to either, modify the existing perfluorosulfonic acid membranes (i.e. Nafion) or develop a new class of membranes that can withstand higher temperature operation. Heteropolyacids (HPAs) represent a class of inorganic materials that have been investigated as additives in PEMFCs membranes for the purpose of: 1) enhancing the proton conductivity and, 2) reducing the fuel crossover. This review focuses on discussing the recent developments attained upon the introduction of HPAs in proton exchange membranes. The review summarized the various efforts made on either modifying the existing Nafion membranes with HPAs, or by immobilizing them in other polymers such as PBI and SPEEK. Remarkable enhancements in proton conductivities, as well as a significant reduction in fuel crossover, were reported. However, the leaching of HPAs is still a major obstacle. The current review concludes that the successful implementation of HPAs in PEMFCs membranes can be achieved upon developing proper immobilization techniques within the polymers' matrix.  相似文献   

5.
In this study, functionalized titania nanotubes (F-TiO2-NT) were synthesized by using 3-mercaptopropyl-tri-methoxysilane (MPTMS) as a sulfonic acid functionalization agent. These F-TiO2-NT were investigated for potential application in high temperature hydrogen polymer electrolyte membrane fuel cells (PEMFCs), specifically as an additive to the proton exchange membrane. Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) results confirmed that the sulfonic acid groups were successfully grafted onto the titania nanotubes (TiO2-NT). F-TiO2-NT showed a much higher conductivity than non-functionalized titania nanotubes. At 80 °C, the conductivity of F-TiO2-NT was 0.08 S/cm, superior to that of 0.0011 S/cm for the non-functionalized TiO2-NT. The F-TiO2-NT/Nafion composite membrane shows good proton conductivity at high temperature and low humidity, where at 120 °C and 30% relative humidity, the proton conductivity of the composite membrane is 0.067 S/cm, a great improvement over 0.012 S/cm for a recast Nafion membrane. Based on the results of this study, F-TiO2-NT has great potential for membrane applications in high temperature PEMFCs.  相似文献   

6.
In this study, the effect of graphene nanoplatelet (GNP) and graphene oxide (GO) based carbon supports on polybenzimidazole (PBI) based high temperature proton exchange membrane fuel cells (HT-PEMFCs) performances were investigated. Pt/GNP and Pt/GO catalysts were synthesized by microwave assisted chemical reduction support. X-ray diffraction (XRD), Thermogravimetric analysis (TGA), Brauner, Emmet and Teller (BET) analysis and high resolution transmission electron microscopy (HRTEM) were used to investigate the microstructure and morphology of the as-prepared catalysts. The electrochemical surface area (ESA) was studied by cyclic voltammetry (CV). The results showed deposition of smaller Pt nanoparticles with uniform distribution and higher ECSA for Pt/GNP compared to Pt/GO. The Pt/GNP and Pt/GO catalysts were tested in 25 cm2 active area single HT-PEMFC with H2/air at 160 °C without humidification. Performance evaluation in HT-PEMFC shows current densities of 0.28, 0.17 and 0.22 A/cm2 for the Pt/GNP, Pt/C and Pt/GO catalysts based MEAs at 160 °C, respectively. The maximum power density was obtained for MEA prepared by Pt/GNP catalyst with H2/Air dry reactant gases as 0.34, 0.40 and 0.46 W/cm2 at 160 °C, 175 °C and 190 °C, respectively. Graphene based catalyst supports exhibits an enhanced HT-PEMFC performance in both low and high current density regions. The results indicate the graphene catalyst support could be utilized as the catalyst support for HT-PEMFC application.  相似文献   

7.
Proton exchange membrane (PEM) fuel cells operating at elevated temperature, above 120 °C, will yield significant benefits but face big challenges for the development of suitable PEMs. The objectives of this research are to demonstrate the feasibility of the concept and realize [acid/ionic liquid/polymer] composite gel-type membranes as such PEMs. Novel membranes consisting of anhydrous proton solvent H3PO4, the protic ionic liquid PMIH2PO4, and polybenzimidazole (PBI) as a matrix have been prepared and characterized for PEM fuel cells intended for operation at elevated temperature (120–150 °C). Physical and electrochemical analyses have demonstrated promising characteristics of these H3PO4/PMIH2PO4/PBI membranes at elevated temperature. The proton transport mechanism in these new membranes has been investigated by Fourier transform infrared and nuclear magnetic resonance spectroscopic methods.  相似文献   

8.
High temperature PEM fuel cells show enhanced tolerances regarding fuel impurities like CO for use in various applications. However, the impact of air impurities like NOx on the cell behavior is not completely understood yet. This study provides systematic investigation during 500 h of operation in presence of cathode air containing 10 ppm NO or NO2. Nitrogen oxides provoke a strongly and linearly decreasing voltage of 245.3 ± 18.5 μV h−1 and highly comparable damage that verifies similar HT-PEMFC degradation via both oxides. Cyclic voltammetry and electron microscopy reveal the loss of electrochemical catalyst surface by selectively poisoned surface and enforced catalyst particle growth. Impedance spectroscopy reveals besides increased electrode charge transfer resistances an affected proton conductivity. In contrast, SO2/NO2 impurity mixture in real occurring ratio causes less voltage decay due to a positive SO2 impact through H2SO4 formation causing further shown and discussed effects like nitrate formation and discharge.  相似文献   

9.
Organic-inorganic hybrid proton exchange membranes were prepared from poly(vinyl alcohol) (PVA) and various amounts of nanoporous silica containing phenyl sulfonic acid groups. These hybrid membranes were prepared via co-condensation of functionalized nanoporous SBA-15 (SBA-ph-SO3H) as hydrophilic inorganic modifier, glutaraldehyde (GLA) as cross-linking agent in a PVA matrix. These membranes were characterized for their morphology, thermal stability, electrochemical and physicochemical properties using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC) and water uptake studies. The SBA-ph-SO3H/PVA composite membranes have a higher water retention and thermal stability than that of Nafion 117, perhaps because of responsibility of both acidic groups and nanoporous structure of silica additive. This work demonstrates the promising potential of new composite membranes for the development of high-performance and high-stability PEM fuel cells with improved proton conductivity.  相似文献   

10.
In this study, it is aimed to investigate the graphitization effect on the performance of the multi walled carbon nanotube catalyst support for high temperature proton exchange membrane fuel cell (HT-PEMFC) application. Microwave synthesis method was selected to load Pt nanoparticles on both CNT materials. Prepared catalyst was analyzed thermal analysis (TGA), Transmission Electron Microscopy (TEM) and corrosion tests. TEM analysis proved that a distribution of Pt nanoparticles with a size range of 2.8–3.1 nm was loaded on the Pt/CNT and Pt/GCNT catalysts. Gas diffusion electrodes (GDE) were manufactured by an ultrasonic spray method with synthesized catalyst. Polybenzimidazole (PBI) membrane based Membrane Electrode Assembly (MEA) was prepared for observe the performance of the prepared catalysts. The synthesized catalysts were also tested in a HT-PEMFC environment with a 5 cm2 active area at 160 °C without humidification. This study demonstrates the feasibility of using the microwave synthesis method as a fast and effective method for preparing high performance Pt/CNT and Pt/GCNT catalyst for HT-PEMFC. The HT-PEMFC performance evaluation shows current densities of 0.36 A/cm20.30 A/cm2 and 0.20 A/cm2 for the MEAs prepared with Pt/GCNT, Pt/CNT and Pt/C catalysts @ 0.6 V operating voltage, respectively. AST (Accelerated Stress Test) analyzes of MEAs prepared with Pt/GCNT and Pt/CNT catalysts were also performed and compared with Pt/C catalyst. According to current density @ 0.6 V after 10,000 potential cycles, Pt/GCNT, Pt/CNT and Pt/C catalysts can retain 61%, 67% and 60% of their performance, respectively.  相似文献   

11.
In this study, a three-dimensional, steady-state, non-isothermal numerical model of high temperature proton exchange membrane fuel cells (HT-PEMFCs) operating with novel sulfonated polybenzimidazole (SPBI) membranes is developed. The proton conductivity of the phosphoric acid doped SPBI membranes with different degrees of sulfonation is correlated based on experimental data. The predicted conductivity of SPBI membranes and cell performance agree reasonably with published experimental data. It is shown that a better cell performance is obtained for the SPBI membrane with a higher level of phosphoric acid doping. Higher operating temperature or pressure is also beneficial for the cell performance. Electrochemical reaction rates under the ribs of the bipolar plates are larger than the values under the flow channels, indicating the importance and dominance of the charge transport over the mass transport.  相似文献   

12.
Increasing Polymer Electrolyte Fuel Cells’ (PEFCs) operating temperature has benefits on the performance and the ease of utilisation of the heat generated; however, efforts for high temperature PEFCs have resulted in high degradation and reduced life time. In the literature, conventional low temperature (T < 80 °C) and high temperature (140–200 °C) regimes have been extensively studied, while the gap of operating at intermediate temperature (IT) (100–120 °C) has been scarcely explored.The main bottleneck for operating at IT conditions is the development of a suitable proton exchange membrane with comparable performance and lifetime to the commercially used Nafion operating at conventional conditions. In this work, composite membranes of Graphene Oxide (GO) and Nafion of varied thickness were fabricated, characterised and assessed for in-situ single cell performance under automotive operating conditions at conventional and intermediate temperatures.The material characterisation confirmed that a composite GO-Nafion structure was achieved. The composite membrane demonstrated higher mechanical strength, enhanced water uptake, and higher performance. It was demonstrated that by utilising GO-Nafion composite membranes, an up to 20% increase in the maximum power density at all operating temperatures can be achieved, with the optimum performance is obtained at 100 °C. Moreover, the GO-Nafion membrane was able to maintain its open circuit voltage values at increased temperature and reduced thickness, indicating better durability and potentially higher lifetime.  相似文献   

13.
Novel composite membranes were prepared using imidazolium type aprotic ionic liquids and sulfonated poly (ether ketone) (SPEK) as polymer matrix by solution casting process. All the prepared membranes were characterized for their thermal stability, mechanical properties, ion exchange capacity, proton conductivity and leaching out of ionic liquids in presence of water. Ionic liquid based membranes were more flexible than neat SPEK membrane due to the plasticization effect of ionic liquids. The interactions and compatibility occurring among components were investigated by vibration spectroscopy (FTIR ATR) and scanning electron microscopy respectively. The thermal stability of composite membranes was higher than unmodified membranes. The ion conductivity of composite membranes under anhydrous conditions was found to be dependent on temperature, type and concentration of ionic liquid in SPEK matrix. Ion conductivities of composite membranes under anhydrous condition were found to be up to two orders (∼100 times) higher than neat SPEK membrane and it was found to be ∼5 mS/cm at 140 °C for SPEK/OTf-70. These composite membranes can be successfully operated at temperatures ranging from 40 °C to 140 °C under anhydrous conditions.  相似文献   

14.
Sulfonated SBA-15 mesoporous silica (SM-SiO2)-incorporated sulfonated poly(phenylsulfone) (SPPSU) composite membranes are fabricated for potential application in low-humidity proton exchange membrane fuel cells (PEMFCs). The SM-SiO2 particles are synthesized using tetraethoxy silane (TEOS) as a mechanical framework precursor, Pluronic 123 triblock copolymer as a mesopore-forming template, and mercaptopropyl trimethoxysilane (MPTMS) as a sulfonation agent. A distinctive feature of the SM-SiO2 particles is the long-range ordered 1-D skeleton of hexagonally aligned mesoporous cylindrical channels bearing sulfonic acid groups. Based on a comprehensive characterization of the SM-SiO2 particles, the effect of SM-SiO2 (as a functional filler) addition on the proton conductivity of the SPPSU composite membrane is examined as a function of temperature and relative humidity. An intriguing finding is that the proton conductivity of the SPPSU composite membrane exhibits a strong dependence on the relative humidity of measurement conditions. This anomalous behavior is further discussed with an in-depth consideration of the characteristics and dispersion state of SM-SiO2 particles, which affect the tortuous path for proton movement, water uptake, and state of water. Notably, at low-humidity conditions, the SM-SiO2 particles in the SPPSU composite membrane serve as an effective water reservoir to tightly retain water molecules and also as a supplementary proton conductor, whereas they behave as a barrier to proton transport at fully hydrated conditions.  相似文献   

15.
In this study, novel nanofiber based-hybrid proton conducting membranes for polymer electrolyte membrane (PEM) fuel cells were fabricated via electrospinning method using sulfonated silica particles (S–SiO2) as a functional additive. Here, poly(vinylidene fluoride-co-trifluoroethylene) (P(VDF-TrFE)) was used as the carrier polymer during electrospinning step for the fabrication of PEM fuel cell membrane structure for the first time in literature. The effect of electrospinning conditions, i.e. namely, solvent, carrier polymer, electrospinning voltage, relative humidity, and flow rate on the uniformity of the resultant electrospun mats, and the average fiber diameter, respectively, were investigated in detail. Furthermore, electrospinning was conducted with poly(vinylidene fluoride) (PVDF) as the carrier polymer to compare with (P(VDF-TrFE)) as well. S–SiO2 particles were homogeneously distributed along the carrier polymer without any noticeable bead formation. After electrospinning, fiber mats were transformed into dense membranes via hot-pressing and subsequent Nafion® impregnation. After obtaining the densified membrane, proton conductivity, water uptake and mechanical strength of the hybrid membranes were examined and reported as well. Consequently, hybrid membrane with P(VDF-TrFE) carrier exhibited a superior proton conductivity (102 mS/cm) benchmarked with PVDF carrier polymer containing membrane (43 mS/cm) and solution casted Nafion® membrane (95 mS/cm) at the same conditions.  相似文献   

16.
A highly porous polyimide film with tunable pore size, porosity and thickness is synthesized and used as a matrix to construct a Nafion-infiltrated composite membrane. A very efficient way for an easy and complete infiltration of the proton-conducting polymer into this substrate is developed, which is usually a major problem for composite membranes. Due to the complete inertness to methanol and the very high mechanical strength of the polyimide matrix, the swelling of the composite membrane is greatly suppressed and the methanol crossover is also significantly reduced (80 times), where as while high proton conductivity (comparable with Nafion) and mechanical strength (4 times stronger than Nafion) is still maintained. This membrane demonstrates significantly improved cell performance compared with the Nafion membrane and is a promising candidate for use in direct methanol fuel cells.  相似文献   

17.
In an effort to improve the dimensional change and proton conductivity of sulfonated poly(phenylsulfone) (SPPSU) membranes and facilitate their application to proton exchange membrane fuel cells (PEMFC), we develop a new composite membrane featured with a multilayer structure. The multilayer structure consists of a SPPSU-impregnated SiO2 ceramic layer and a SPPSU layer. In contrast to a bulk composite membrane containing randomly dispersed SiO2 nanoparticles, this unusual multilayer-structured composite membrane has an independent ceramic layer comprising close-packed SiO2 nanoparticles and polyetherimide (PEI) binders. On the basis of structural characterization of the composite membranes, the effects of the multilayer structure on the membrane properties are investigated. The introduction of the SiO2 ceramic layer is found to be effective in not only suppressing dimensional change but also enhancing proton conductivity of the multilayered composite membrane. Another intriguing finding is that the decrease of proton conductivity at a low humidity condition encountered in conventional water-swollen membranes is retarded in the multilayered composite membrane. These improvements in the proton conductivity of the multilayered composite membrane are discussed by considering the morphological uniqueness and the water retention capability of hygroscopic SiO2 nanoparticles.  相似文献   

18.
Sulphonated-PEEK polymers with two different sulphonation degrees (DS) were obtained by varying the sulphonation parameters. Ionomeric membranes were prepared as a reference. Composite membranes were obtained by mixing different percentage of 3-aminopropyl functionalised silica to the polymers dissolved in DMAc. The resulting membranes were characterised in terms of water uptake, IEC and proton conductivity in different conditions of temperature and relative humidity.  相似文献   

19.
In this paper, a series of short stacks with 2-cell, 6-cell and 10-cell employing phosphotungstic acid functionalized mesoporous silica (HPW-meso-silica) nanocomposite proton exchange membranes (PEMs) have been successfully fabricated, assembled and tested from room temperature to 200 °C. The effective surface area of the membrane was 20 cm2 and fabricated by a modified hot-pressing method. With the 2-cell stack, the open circuit voltage was 1.94 V and it was 5.01 V for the 6-cell stack, indicating a low gas permeability of the HPW-meso-silica membranes. With the 10-cell stack, a maximum power density of 74.4 W (equivalent to 372.1 mW cm−2) occurs at 150 °C in H2/O2, and the stack produces a near-constant power output of 31.6 W in H2/air at 150 °C without external humidification for 50 h. The short stack also displays good performance and stability during startup and shutdown cycling testing for 8 days at 150 °C in H2/air. Although the stack test period may be too short to extract definitive conclusions, the results are very promising, demonstrating the feasibility of the new inorganic HPW-meso-silica nanocomposites as PEMs for fuel cell stacks operating at elevated temperatures in the absence of external humidification.  相似文献   

20.
Zirconium phosphate (ZrP) was investigated as a possible proton conductor material in direct hydrocarbon polymer electrolyte membrane (PEM) fuel cells that operate at greater temperatures than conventional PEM fuel cells. Amorphous zirconium phosphate was synthesized in this work by precipitation at room temperature via reaction of ZrOCl2 with H3PO4 aqueous solutions. The conductivity of the synthesized ZrP materials were 7.04 × 10−5 S cm−1 for ZrP oven dried in laboratory air at 70 °C and 3.57 × 10−4 S cm−1 for ZrP powder dried first at 70 °C in laboratory air and then processed at 200 °C with continuous H2O injection at an H2O/N2 molar ratio of 6. This work showed that by maintaining appropriate water content in the vapour phase at processing conditions, it was possible to alter the composition of zirconium phosphate to a sufficiently hydrated state, and thereby avoid the normal decrease in conductivity with increasing temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号