首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To design inexpensive carbon catalysts and enhance their oxygen reduction reaction (ORR) activity is critical for developing efficient energy-conversion systems. In this work, a novel Fe-N-C hybrid electrocatalyst with carbon nanolayers-encapsulated Fe3O4 nanoparticles is synthesized successfully by utilizing the molecular-level confinement of graphitic C3N4 structures via hemin biomaterial. Benefiting from the Fe-N structure prevalent on the carbon nanosheets and large mesopore-dominated specific surface area, the synthesized catalyst under optimized conditions shows excellent electrocatalytic performance for ORR with an EORR at 1.08 V versus reversible hydrogen electrode (RHE) and an E1/2 at 0.87 V vs. RHE, and outstanding long-term stability, which is superior to commercial Pt/C catalysts (EORR at 1.04 V versus RHE and E1/2 at 0.84 V versus RHE). Moreover, the low hydrogen peroxide yield (<11%) and average electron transfer number (~3.8) indicate a four-electron ORR pathway. Besides, the maximum power density of the home-made Zn-air battery using the obtained catalyst is 97.6 mW cm−2. This work provides a practical route for the synthesis of cheap and efficient ORR electrocatalysts in metal-air battery systems.  相似文献   

2.
It is highly critical to explore efficient bifunctional oxygen electrocatalysts for regenerative fuel cells and metal-air batteries. Herein, N, F co-doped carbon material (NF@CB) was synthesized as metal-free efficient bifunctional electrocatalysts by directly pyrolyzing a mixture of carbon black, polytetrafluoroethylene and melamine. Benefiting from the synergistic effects between N and F atoms, NF@CB exhibits a positive half-wave potential (E1/2) of 0.814 V (vs. RHE) for oxygen reduction reaction, and an operating potential (E10) of 1.609 V at 10 mA cm−2 for oxygen evolution reaction in alkaline electrolyte. The bifunctional oxygen electrocatalytic activity index (ΔE = E10E1/2) is 0.795 V, which is notably better than that of the single N-doped carbon (1.238 V), and similar to that of the commercial Pt/C and RuO2 mixture catalyst (0.793 V). Impressively, the assembled Zn-air battery (ZAB) with NF@CB as an air-electrode catalyst displays a small charge/discharge voltage gap of 0.852 V at 20 mA cm−2. Moreover, the NF@CB catalyzed ZAB exhibits good rechargeability and long-lasting cycling stability with over 49 h. This investigation introduces a cheap and simple way to develop highly efficient bifunctional N, F co-doped electrocatalysts.  相似文献   

3.
Inadequate performance of oxygen reduction reaction (ORR) hinders the commercialization of proton exchange membrane fuel cells (PEMFCs). Herein, we report an ORR catalyst consisting of intermetallic PtCo nanoparticles and atomically dispersed CoNC sites, exhibiting outstanding performance in the RDE test (E1/2 = 0.906 V vs. RHE, 7 mV loss after 20,000 cycles, 0.63 A mg−1Pt of mass activity at 0.9 V). The enhancement of activity and durability is attributed to the unique structure that Pt atoms are modified by the smaller transition metal atoms Co to form PtCo intermetallic and further regulated by CoNC, the dual electronic engineering results appropriate binding energy between Pt and oxygen species. In addition, enhanced PtCo–CoNC interaction impedes the agglomeration of nanoparticles, which enables the formation of sub-5 nm PtCo intermetallic and enhances the stability. This synthesis method provides an idea for further regulating the electronic structure of Pt alloy and synthesize uniform and small intermetallic particles.  相似文献   

4.
The development of non-precious metal catalysts to replace scarce and expensive Pt-based catalysts is critical for oxygen reduction reactions (ORR), where zeolitic-imidazolate-framework-derived (ZIF-derived) iron-based electrocatalysts hold a promising prospect. Herein, Fe3O4 was used as Fe source, and ZIF-8 was used as C and N source to prepare Fe-NC catalysts. Specifically, the half-wave potential (E1/2) of the Fe-NC reached 0.90 V, which was higher than commercial Pt/C catalysts (0.87 V), and the overpotential of OER reached 327 mV. In addition, the power density tested in Zn-air batteries upped to 129.59 mW cm−2, surpassing that of the Pt/C (108.93 mW cm−2). The superior performance was attributed to the effective introduction of Fe, the large specific surface area (851.6 m2 g−1), relatively regular porous structure and the high degree of graphitization.  相似文献   

5.
Non-precious metal-based electrocatalysts with excellent activity and stability are highly desired for the sluggish oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Herein, a tannic acid (TA) etching strategy is used to inhibit the metal aggregation and achieve muti-metal doping. The hollow NH2-MIL-101@TA derived Fe–N–C catalyst exhibits superior ORR catalytic activity with an E1/2 of 0.872 V and a maximum output power density of 123.4 mW cm−2 in Zn-air battery. Since TA can easily chelate with metal ions, Fe/Co–N–C and Fe/Ni–N–C are also synthesized. Fe/Ni–N–C manifests exceptional bifunctional activity with an Ej = 10 of 1.67 V and a potential gap of 0.833 V between Ej = 10 and E1/2 in alkaline electrolyte, which is 45 mV smaller than Pt/C–IrO2. The improvement of ORR and OER performance of the catalysts via the simple TA etching and chelation method provides a novel strategy for the design and synthesis of efficient electrocatalysts.  相似文献   

6.
Herein, Ni-doped Mn2O3 microspheres are successfully synthesized via the facile coprecipitation of metal ions and ammonium bicarbonates, followed by a heat treatment process. Ni-doped Mn2O3 exhibits outstanding catalytic performance toward the oxygen reduction reaction (ORR) in alkaline media with a half-wave potential of 0.801 V, limiting current density of 6.02 mA cm?2 at 0.6 V vs. RHE, outstanding long-term durability, and strong tolerance to methanol. Furthermore, a Zn–air primary battery using Ni-doped Mn2O3 as an air cathode shows high open-circuit voltage of 1.52 V and high power density of 88.2 mW cm?2, outperforming the commercial Pt/C cathode. The exceptional performance of the Ni-doped Mn2O3 microspheres is ascribed to the hierarchical structure, optimized particle size, and Ni incorporation into Mn2O3. The proposed synthesis strategy provides a new methodology for the design and fabrication of electrochemically active transition metal-doped materials as efficient electrocatalysts for a variety of energy storage and conversion reactions.  相似文献   

7.
Naturally abundant well-decomposed peat was used as a precursor for synthesizing several non-platinum group metal-type oxygen electrocatalysts. The materials were studied in an alkaline environment, where it was discovered that the oxygen evolution (OER) and the oxygen reduction (ORR) activity of the catalysts can be severely influenced by changing the parameters of the peat carbonization procedure. High OER activity was achieved with a minimally treated catalyst which seemed to be because of a Co-rich FeCo alloy species. In both rotating disc electrode and anion exchange membrane fuel cell experiments, the catalyst based on ZnCl2-activated peat-derived carbon showed superior ORR performance with a peak power density of 51 mW cm?2. It was found that the peak power densities of the catalysts correlated with several physical parameters. Above all, we demonstrate the possibility of fabricating advanced functional carbon materials for oxygen electrocatalysis from peat.  相似文献   

8.
Perovskite oxides are widely regarded as the promising air electrode catalytic materials for zinc-air batteries (ZABs). In the present work, A-site Y and B-site Fe co-doped La0.85Y0.15Ni0.7Fe0.3O3 perovskite catalyst was prepared by self-propagating high-temperature synthesis, and this material was evaluated as a bifunctional electrocatalyst for ZABs. The effect of co-doping on crystal structure and reaction activities, which can promote oxygen reduction reaction (ORR) and oxygen evolution reaction (OER), was investigated. Results show that Y and Fe co-doping substantially improved the ORR and OER of LaNiO3. In comparison with LaNiO3, the ORR performance of La0.85Y0.15Ni0.7Fe0.3O3 exhibited a higher limiting current density (3.8 mA cm?2 at 0.4 V vs. RHE) and more positive onset potential (0.75 V vs. RHE) at 1600 rpm. It also had an excellent OER performance of 1.74 V vs. RHE at 10 mA cm?2. When La0.85Y0.15Ni0.7Fe0.3O3 was used as an air electrode catalyst for ZABs, it exhibited a high power density of 93.6 mW cm?2, which increased by 84.8% compared with that of LaNiO3. Moreover, the full cell with La0.85Y0.15Ni0.7Fe0.3O3 air electrode catalyst was operated for more than 80 h, maintaining good stability. Therefore, La0.85Y0.15Ni0.7Fe0.3O3 can be used as a promising bifunctional air electrode catalyst for ZABs. The characterization analysis reveals that A-site Y and B-site Fe co-doped catalyst transforms crystal structure from trigonal system to cubic system, retain the valence state of Ni3+ and increases the contents of O22?/O?, and these properties are more conducive for LaNiO3 catalysis.  相似文献   

9.
In this paper, CoMn2O4/NC nanocomposites were synthesized via a facile ionothermal synthesis route, and their electrocatalytic performance for oxygen reduction reaction (ORR) was investigated in a direct glucose alkaline fuel cell (DGAFC). The CoMn2O4 spinel supported on nitrogen-doped carbon was successfully synthesized with the assistance of the ionic liquid [C6mim]Cl. The nanocomposite exhibited excellent electrocatalytic activity towards ORR. Especially, CoMn2O4/NC achieved a half wave potential of 0.81 V (vs RHE) and a maximum diffusion limiting current density of 5.2 mA cm?2, that are very close to commercial Pt/C catalyst (E1/2 = 0.83 V vs RHE, Jd = 5.0 mA cm?2). In addition, the catalytic performance of CoMn2O4/NC was investigated in DGFC. The fuel cell with a CoMn2O4/NC air cathode achieved a peak power density of 23.72 W m?2, which was even superior to that with a commercial Pt/C air cathode. This work revealed that ionic liquid is a viable reaction medium for preparation of catalyst with robust activity.  相似文献   

10.
It is highly desirable to develop high-efficiency non-precious electrocatalysts toward oxygen reduction reaction (ORR). In this work, Fe2O3-encapsulated and Fe-Nx-containing porous carbon spheres (Fe2O3/N-MCCS) with unique multi-cage structures and high specific surface area (1360 m2 g?1) are fabricated. The unique porous structure of Fe2O3/N-MCCS ensures fast transportation of oxygen during ORR. The combined effect of Fe2O3 nanoparticles and Fe-Nx configurations endows Fe2O3/N-MCCS (E1/2 = 0.837 V vs. RHE) with superior ORR activity and methanol tolerance to Pt/C. And, Fe2O3/N-MCCS exhibits better stability than nitrogen-modified carbon. The characterization results of Fe2O3/N-MCCS after long-term test reveals its excellent structural stability. Impressively, zinc-air battery based on Fe2O3/N-MCCS showed a peak power density of 132.4 mW cm?2 and a specific capacity of 797 mAh g?1, respectively.  相似文献   

11.
The significant progress of non-precious metal cathodic electrocatalytic materials is impressive in electrochemical energy conversion application. Here, iron and nitrogen co-doped porous carbon spheres (Fe/N-PCS) have been designed via 3-aminophenol/formaldehyde (APF) resin spheres as carbon precursor, ferric nitrate as iron source, colloidal silica as template and tetramethylguanidine as catalyst by the improved Stöber method. Fe/N-PCS possesses uniform spherical morphology, abundant mesoporous shape and high surface area and exhibits higher oxygen reduction reaction (ORR) electrocatalytic activity (E1/2, 0.838 V vs. RHE) compared with the Pt/C (E1/2, 0.827 V vs. RHE) in alkaline media. In addition, the methanol tolerance and catalytic stability of Fe/N-PCS are greater than commercial Pt/C catalyst. The outstanding ORR behavior of Fe/N-PCS mainly benefits from the iron and nitrogen elements synergistic effect, pyridinic N and the spherical porous structure enabling plenty of active sites exposed. This method is prospective for preparation of highly efficient cathodic ORR electrocatalyst.  相似文献   

12.
Constructing highly efficient and durable non-noble metal modified carbon catalysts for oxygen reduction reaction (ORR) in the whole pH range is essential for energy conversion devices but still remains a challenge. Herein, the Fe/Fe3C nanoparticles and Fe-NX species anchored on the interconnected mesoporous carbon materials are fabricated through an economical and facile template-assisted polymerization-pyrolysis strategy. The catalyst exhibits unique features with the electronic interaction between Fe/Fe3C and Fe−NX, large specific surface area and high mesoporous structure as well as nitrogen doping in porous carbon skeletons, which can effectively catalyze ORR over the full pH range. In an alkaline electrolyte, the optimized catalyst displays favorable ORR performance with positive onset potential (Eonset = 0.91 V), half-wave potential (E1/2 = 0.83 V), long-term cycles stability and methanol tolerance, exceeding those for the commercial Pt/C. Furthermore, the prepared catalyst could be directly assembled into the alkaline Zn−air battery that exhibits the open-circuit voltage of 1.44 V, high power density of 96.0 mW cm−2 and long-term durability. Therefore, the template-assisted polymerization-pyrolysis strategy provides a promising route for designing high-performance non-noble metal decorated ORR electrocatalysts.  相似文献   

13.
Microbial fuel cells (MFCs), a promising future energy conversion technology, play a significant role in the area of sustainable and renewable energy. In air-cathode MFCs, the catalytic activity for oxygen reduction reaction (ORR) of cathode electrocatalyst is the key factor to the performance of MFCs. Development of efficient and economical ORR electrocatalysts is an important step for the wide application of MFCs. Herein, Co wrapped carbon nanotubes (CNTs) N-doped nanoporous carbon materials (Co@NC-CoxZny) are constructed via a facile zinc-assisted growth pyrolytic approach of bimetallic zeolitic imidazole frameworks (BMZIFs)-derived strategy. They are directly prepared via carbonization of the precursor CoxZny-BMZIFs. During the pyrolysis process, the evaporation of zinc plays critical role in the in-situ growth of CNTs. For instance, the optimal catalyst, Co@NC-Co1Zn3, exhibits excellent ORR performance activity and stability with on-set potential (Eon-set) of 0.830 V (vs. RHE) and diffusion-limited current density (jL) of 6.706 mA cm?2, which is superior to the benchmark catalyst of commercial 20 wt% Pt/C. Additionally, Co@NC-Co1Zn3 displays four-electron pathway, long-term stability and better resistance to methanol tolerance. The MFC with Co@NC-Co1Zn3 cathode shows a maximum power density of 1039 mW m?2, and outperforms the MFC with commercial 20 wt% Pt/C catalyst (678 mW m?2). This work paved the way for exploring cost-effective, superior performance non-precious metal-based catalysts for air-cathode MFCs.  相似文献   

14.
The heteroatom-doped porous carbon material as an alternative to commercial Pt/C catalysts in oxygen reduction reaction has attracted extensive attention. In this study, the rapeseed meal-based material (ARM-900) prepared by carbonization with high temperature and activation with ZnCl2 had a porous structure and was doped with N and S heteroatoms. Compared to commercial Pt/C catalysts (onset potential of 0.95 V vs. RHE and limiting diffusion current of ?5.7 mA cm?2), ARM-900 demonstrated excellent electrocatalytic performance with an onset potential of 0.98 V vs. RHE and limiting diffusion current of ?8.1 mA cm?2 in O2 saturated 0.1 M KOH solution. Meanwhile, ARM-900 had higher durability and more superior methanol tolerance than Pt/C catalyst. The excellent ORR performance of ARM-900 was derived from the formation of abundant pore structure and the doping of the autochthonous N and S heteroatoms. MFCs with ARM-900 as the cathode had the maximum power density of 808 mW/m2, which was obviously better than Pt/C (709 mW/m2). This study provided an environment-friendly and effective strategy for the reuse of rapeseed meal and the preparation of N and S-doped non-metallic ORR catalysts.  相似文献   

15.
Low-cost yet high-efficiency oxygen evolution reaction (OER) catalysts have attracted ardent attention to speed up the development of water electrolysis. Recent researches have shown that layered double hydroxides (LDH) are promising candidates towards OER, but further improvement is still highly demanded for its large-scale practical application in water splitting. Herein, we report a 3D P-doped MoO3/FeCo LDH/NF (P–MoO3/FeCo LDH/NF) ultrathin nanosheet heterostructure electrocatalyst with an extremely low overpotentials of 225 mV for delivering a current density of 10 mA cm?2 for OER and a great durability for at least 80 h by a simple one-step hydrothermal method. Extraordinarily, the P–MoO3/FeCo LDH catalyst achieves a high current density of 300 mA cm?2 and even 350 mA cm?2 at an extremely low overpotential of 297 mV and 302 mV, respectively, which is crucial for the water electrolysis industry. The remarkable performance may be attributed to that the heterostructure between P–MoO3 and FeCo LDH not only optimizes electronic structure, thus inducing electron transfer from P–MoO3 to FeCo LDH and then realizing fast electron transfer rates, but also produces more catalytic active sites. Moreover, the synergetic effect between MoO3 and FeCo LDH also plays an essential role for enhancing the catalytic performances. This work explores the effect of phosphomolybdic acid on the structure, composition and performances of FeCo LDH catalysts, and also provides a simple and cost-effective way to prepare high-efficiency and low-cost layered double hydroxide electrocatalysts for OER.  相似文献   

16.
It is of great urgency to design inexpensive and high-performance oxygen reduction reaction (ORR) electrocatalysts derived from biowastes as substitutes for Pt-based materials in electrochemical energy-conversion devices. Here we propose a strategy to synthesize three-dimensional (3D) porous nitrogen-doped network carbons to catalyze the ORR from two-step pyrolysis engineering of biowaste scale combined with the use of a ZnCl2 activator and a FeCl2 promotor. Electrochemical tests show that the synthesized network carbons have exhibited comparable ORR catalytic activity with a half-wave potential (~0.85 V vs. RHE) and outstanding cyclical stability in comparison to the Pt/C catalyst. Beyond that, a high electron transfer number (~3.8) and a low peroxide yield (<7.6%) can be obtained, indicating a four-electron reaction pathway. The maximum power density is ~68 mW cm?2, but continuous discharge curves (at a constant potential of ~1.30 V) for 12 h are not obviously declined in Zn-air battery tests using synthesized network carbons as the cathodic catalyst. The formation of 3D porous structures with high BET surface area can effectively expose the surface catalytic sites and promote mass transportation to boost the ORR activity. This work may open a new idea to prepare porous carbon-based catalysts for some important reactions in new energy devices.  相似文献   

17.
Developing non-precious metal catalysts for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is crucial for proton exchange membrane fuel cell (PEMFC), metal-air batteries and water splitting. Here, we report a in-situ simple approach to synthesize ultra-small sized transition metal carbides (TMCs) nanoparticles coupled with nitrogen-doped carbon hybrids (TMCs/NC, including WC/NC, V8C7/NC and Mo2C/NC). The TMCs/NC exhibit excellent ORR and HER performances in acidic electrolyte as bi-functional catalysts. The potential of WC/NC at the current density of 3.0 mA cm?2 for ORR is 0.814 V (vs. reversible hydrogen electrode (RHE)), which is very close to Pt/C (0.827 V), making it one of the best TMCs based ORR catalysts in acidic electrolyte. Besides, the TMCs/NC exhibit excellent performances toward HER, the Mo2C/NC only need an overpotential of 80 mV to drive the current density of 10 mA cm?2, which is very close to Pt/C (37 mV), making it the competitive alternative candidate among the reported non-precious metal HER catalysts.  相似文献   

18.
Designing highly efficient and durable metal-free electro-catalysts replacing the precious (non)noble metals is crucial to the future hydrogen economy and various renewable energy conversion and storage devices. Herein, we report an efficient low-cost nanoporous activated carbon sheets (NACS) with hierarchical pore architecture from Indian Ooty Varkey (IOV) food waste for oxygen evolution (OER) and hydrogen evolution reactions (HER) by following “waste to wealth creation” strategy. Characterization of NACS carbo-catalyst reveals the presence of pyridinic-nitrogen inherited by self-doping of N from the biomass with high BET surface area (1478.0 m2 g-1). As an electrocatalyst in alkaline medium, it exhibits low-onset potential (1.36 V vs. RHE), an overpotential (η10) of 0.34 V at 10.0 mA cm−2 with a small Tafel value (43 mV dec−1), and good stability towards OER compared to Pt or Ir commercial catalysts. Tested as HER catalyst, it displays an impressive HER activity with a low-onset potential of −0.085 V (vs. RHE), and overpotential (η10) of 0.38 V at 10.0 mA cm−2 with a small Tafel slope of 85 mV dec−1.  相似文献   

19.
In recent years, Co, N co-doped carbon (Co–N–C) materials as oxygen reduction reaction (ORR) catalysts have attracted great attention because of their good ORR stability as well as decent activity. Co-doped zeolitic imidazolate framework-8 (Co@ZIF-8) as the precursor for synthesizing Co–N–C has attracted great interest recently. Co@ZIF-8 synthesis method may affect the properties of the as-synthesized Co@ZIF-8 precursors, which will surely affect the properties and ORR performance of Co@ZIF-8-derived Co–N–C catalysts. Herein, three methods, viz. room-temperature stirring method, reflux method, and hydrothermal method, were used to synthesize Co@ZIF-8 precursors. Physical characterization shows that the synthesis method has a great influence on the textural properties, composition, and graphitization degree of the as-synthesized Co–N–C catalysts. Electrochemical characterization shows that Co–N–C-R synthesized with reflux method exhibits an onset potential (Eonset) of 0.905 V, a half-wave potential (E1/2) of 0.792 V and a limiting current density (JL) of 5.85 mA cm?2 in acidic media, which are higher than those of Co–N–C–S (Eonset = 0.870 V, E1/2 = 0.770 V, JL = 4.71 mA cm?2) and Co–N–C–H (Eonset = 0.892 V, E1/2 = 0.785 V, JL = 4.68 mA cm?2) synthesized with room-temperature stirring method and hydrothermal method, respectively. The better ORR activity observed on Co–N–C-R can be attributed to its larger graphitization degree and larger mesopore volume. Catalytic stability test shows that Co–N–C-R has negligible activity loss after 5000 potential cycles. This work demonstrates that reflux method is a more suitable method for synthesizing Co–N–C catalysts for ORR.  相似文献   

20.
Synthesis of stable catalysts for water splitting is important for the renewable and clean energy production. Here, water oxidation activities of cobalt (II) complexes CoL1-CoL3 (13) with salophen type ligands (N,N′-bis(salicylidene)-4-chloro-1,2-phenylendiamine (H2L1), N,N′-bis(salicylidene)-4-bromo-1,2-phenylendiamine (H2L2) and N,N′-bis(salicylidene)-4-nitro-1,2-phenylendiamine (H2L3)) are studied by electrochemical techniques, FE-SEM images and XRD patterns. Linear sweep voltammetry studies indicate that 2 and 3 have superior activities and only require the overpotential of 316 and 247 mV vs. RHE at current density of 10 mA/cm2 with Tafel slopes of 75 and 50 mVdec?1 at pH = 11. Experiments show relationships between the stability of the complexes and their catalytic activity. It is revealed that substituents on ligands affect the catalytic behaviors. Experiments show that in the presence of 2 and 3, the complexed cobalt ions are likely candidates as molecular catalysts for water oxidation. It is speculated that the O–O bond formation occurs by oxidizing the active center of cobalt complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号