首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Materials Letters》2007,61(14-15):2879-2882
Silica nanoparticles, prepared by the Stober method, have been doped with Eu3+, Dy3+, or processed to result in Au nanoparticles on the silica surface. The luminescence of the rare earth (RE)-doped SiO2 particles has been studied as a function of the nature of the RE, their concentration and also of the presence of Au nanoparticles at the surface of the SiO2 nanoparticles. We have shown that the Eu3+ emission is observable over the experimental conditions examined, whereas it was not possible to observe any emission for Dy3+ doped materials. No enhancement of the Eu3+ emission was observed following the adsorption of gold nanoparticles at the surface of the SiO2 nanoparticle, however an excitation at 250 nm leads to both the emission of the matrix and Eu3+ showing an energy transfer from the SiO2 matrix to Eu3+ ions.  相似文献   

2.
Divalent europium activated alkaline earth orthosilicate M2SiO4 (M = Ba, Sr, Ca) phosphors were synthesized through solid-state reaction technique and their luminescent properties were investigated. Photoluminescence emission spectra of Sr2SiO4:Eu2+ phosphor was tuned by substitution of Sr2+ with 10 mol% Ca2+ or Mg2+. Two emission bands originated from the 4f–5d transition of Eu2+ ion doped into different cation sites in the M2SiO4 host lattice were observed under ultraviolet excitation. The Sr2SiO4:Eu2+ phosphor showed a blue and a green broad emission bands peaked around 475 and 555 nm with some variation for different Eu2+ doping concentration. When 10 mol% of Sr2+ was substituted by Ca2+ or Mg2+, the blue emission band blue-shifted to 460 nm and the green emission band shifted to even longer wavelength. An energy loss due to energy transfer from one Eu2+ to another Eu2+ ion, changing of the crystal field strength and covalence in the host lattice together were assigned for the tuning effect. With an overview of the excitation spectra and the emission spectra in blue and green-yellow color, these co-doped phosphors can become a promising phosphor candidate for white light-emitting-diodes (LEDs) pumped by ultraviolet chip.  相似文献   

3.
The Ca2BO3Cl:Eu2+ phosphor was synthesized by the general high temperature solid-state reaction and an efficient yellow emission under near-ultraviolet and blue excitation was observed. The emission spectrum shows a single intense broad emission band centered at 573 nm, which corresponds to the allowed f-d transition of Eu2+. The excitation spectrum is very broad extending from 350 to 500 nm, which is coupled well with the emission of UV LED (350-410 nm) and blue LED (450-470 nm). The measured emission of In-GaN-based Ca2BO3Cl:Eu2+ LED shows white light to the naked eye with a chromatic coordinate of (0.33, 0.36). The Ca2BO3Cl:Eu2+ is a very appropriate yellow-emitting phosphor for white LEDs.  相似文献   

4.
Y2O3:Eu3+ nanocrystals were prepared via co-precipitation–solvothermal refluxing–calcination method using three kinds of organic solvents, propylene glycol, 1,3-butanediol and polyethylene glycol and yttrium chloride hexahydrate and europium chloride as starting materials. The Y2O3:Eu3+ nanocrystals with diameter of 20–50 nm prepared by refluxing in polyethylene glycol followed by calcinations at 800–1000 °C exhibited the strongest luminescence at 611 nm under the excitation wavelength of 254 nm than the reference sample prepared via conventional co-precipitation method. The photoluminescence spectra of the samples were recorded at room temperature. The effect of concentration of Eu3+ (Eu3+/Y3+ atomic ratio: 0.01–0.1) on the photoluminescence intensity was also investigated. The samples with the Eu3+/Y3+ atomic ratio of 0.07 exhibited the strongest emission at 611 nm and quenching effect was observed above 0.10.  相似文献   

5.
The present investigation aims at the luminescence properties of Ca9Y(VO4)7:Eu3+, Bi3+ red phosphor materials. The red emission at 613 nm originating from 5D07F2 transition of Eu3+ in Ca9Y(VO4)7 is enhanced strongly with Bi3+–V5+ couple as the sensitizer, under excitation either into the 5L6 state or the 5D2 state. The energy transfer from Bi3+–V5+ to Eu3+ is discussed. For a fixed Eu3+ concentration, there is an optimal Bi3+ concentration with 15 mol%, at which the maximum luminescence intensity of Eu3+ is achieved. The red emission of Ca9Y(VO4)7:0.8Eu3+, 0.15Bi3+ (under 395 nm and 465 nm excitations) is stronger than that of commercial Y2O3:Eu3+ phosphor (under 395 nm and 467 nm excitations). Based on the ratios of the red emission at 613 nm to orange one at 592 nm, it is considered that the symmetry of Eu3+ site decreases with doping of Bi3+, leading to more opposite parity components. Lifetime and diffuse reflection spectra measurements indicate that the red emission enhancement is due to the enhanced transition probabilities from the ground state to 5L6 and 5D2 states of Eu3+ in the distorted crystal field. Therefore the present material is a promising red-emitting phosphor for white-light diodes with near-ultraviolet/blue GaN-based chips.  相似文献   

6.
A Eu, Dy co-doped SiO2 matrix xerogel with blue emission was prepared by the sol–gel method. Strong blue emission located between 425 nm and 525 nm with a peak at 486 nm is observed under UV laser excitation at room temperature, which is related to a 4f → 5d energy transition of Eu2+. Such techniques as FT-IR and TGA–DSC were used to measure the microstructure of the luminescent materials. The influence of Dy3+ ions on the luminescent property of Eu2+ was investigated. The emission intensity of Eu, Dy-codoped samples is stronger than that of Eu doped samples. The emission enhancement mechanism relating to Eu2+ is attributed to an energy transfer involving Dy3+ → Eu2+. Using energy transition theory, we speculate that the mechanism may be one of the resonance transfers via multi-polar interactions, and present a possible energy transfer model. The Eu2+ blue emission intensity reaches the maximum when the Dy3+ concentration is 0.1 mol%. When the concentration of Dy3+ is 0.3 mol%, a fluorescence quenching appears which might be related to the overlap part of Eu2+ excitation and emission levels, and also suggests the existence of Eu2+ → Eu2+ energy transfer.  相似文献   

7.
Eu3+-doped (1% and 3%) γ-Ca3(PO4)2 was synthesized by high-pressure and high-temperature experimental method and the samples were characterized by X-ray diffraction. The luminescence properties of samples were investigated by emission and excitation spectra. The excitation spectra of Eu3+-doped γ-Ca3(PO4)2 showed that samples were mainly attributed to Eu3+–O2− charge-transfer band at 270 nm, and some sharp lines were also attributed to Eu3+ f–f transitions in near-UV regions with the strongest peaks at 395 nm. Under the 395 nm excitation, the intense red emission peak at 611 nm was observed. The strongest line (395 nm) in excitation spectra of those phosphors matched well with the output wavelength of UV InGaN-based light-emitting diodes (LEDs) chip. The luminescent properties suggested that Eu3+-doped γ-Ca3(PO4)2 might be regarded as a potential red phosphor candidate for near-UV LEDs.  相似文献   

8.
《Optical Materials》2005,27(3):515-519
CsBr0.9I0.1:Eu2+ crystals were grown by Bridgman technique. Optical absorption spectrum of the unirradiated CsBr0.9I0.1:Eu2+ crystals show absorption bands at 270 nm and 340 nm. Irradiated CsBr0.9I0.1:Eu2+ shows single F band for F(Br) and F(I) centers at 730 nm. Conversion of Eu2+ to Eu3+ after irradiation is confirmed by optical absorption technique. Sharp and single Photoluminescence (PL) emission band is observed at 440 nm for CsBr0.9I0.1:Eu2+ crystals. Photostimulated Luminescence (PSL) emission band observed for CsBr0.9I0.1:Eu2+ crystals at 442 nm due to excitation at 730 nm shows that the F centers are photostimulable. PSL emission intensity increases linearly with irradiation dose up to 2.5 Krad.  相似文献   

9.
A green-emitting phosphor of Eu2+-activated Sr5(PO4)2(SiO4) was synthesized by the conventional solid-state reaction. It was characterized by photoluminescence excitation and emission spectra, and lifetimes. In Sr5(PO4)2(SiO4):Eu2+, there are at least two distinguishable Eu2+ sites, which result in one broad emission situating at about 495 nm and 560 nm. The phosphor can be efficiently excited in the wavelength range of 250–440 nm where the near UV (~ 395 nm) Ga(In)N LED is well matched. The dependence of luminescence intensities on temperature was investigated. With the increasing of temperature, the luminescence of the phosphor shows good thermal stability and stable color chromaticity. The luminescence characteristics indicate that this phosphor has a potential application as a white light emitting diode phosphor.  相似文献   

10.
Eu3+-activated novel red phosphors, MLa2(MoO4)4 (M = Ba, Sr and Ca) were synthesized by the conventional solid state method. The excitation and emission spectra indicate that these phosphors can be effectively excited by UV (395 nm) and blue (466 nm) light, and exhibit a satisfactory red performance at 614 nm. Upon excitation with a 466 nm light, our synthesized phosphors have stronger emission intensity than the sulfide red phosphors used in white LEDs. Due to high emission intensity and a good excitation profile, the Eu3+-doped CaLa2(MoO4)4 phosphor may be a promising candidate in solid-state lighting applications.  相似文献   

11.
The Ba2Mg(PO4)2:Eu2+, Mn2+ phosphor is synthesized by a co-precipitation method. Crystal phase, morphology, excitation and emission spectra of sample phosphors are analyzed by XRD, SEM and FL, respectively. The results indicate particles synthesized by a co-precipitation method have a smaller size in diameter than that synthesized by conventional solid-state reaction method. Emission spectra of BMP:Eu2+, Mn2+ phosphor show a broad blue and a broad yellow emission bands with two peaks at about 456 nm and 575 nm under 380 nm excitation. An overlap between Eu2+ emission band and Mn2+ excitation band proves the existence of energy transfer from Eu2+ to Mn2+. Emitting color of the BMP:Eu2+, Mn2+ phosphor could be tuned by adjusting relative contents of Eu2+ and Mn2+ owing to energy transfer formula. Therefore, BMP:Eu2+, Mn2+ may be considered as a potential candidate for phosphor for near-UV white LED.  相似文献   

12.
Novel α-SiAlON:Eu2+-based yellow oxynitride phosphors with the formula Sr0.375−x Eu x 2+Si12−mn Al m+n O n N16−n (m = 0.75, n = x = 0.004–0.04) have been prepared by firing the powder mixture of SrSi2, α-Si3N4, AlN, and Eu2O3 at 2,000 °C for 2 h under 1 MPa nitrogen atmosphere. The luminescence properties, the dependence of the activator concentration of Eu2+ and the thermal stability of Sr-α-SiAlON:Eu2+ phosphor have been investigated in comparison with Ca-α-SiAlON:Eu2+ phosphor. Similar to Ca-α-SiAlON:Eu2+ phosphor, Sr-α-SiAlON:Eu2+ phosphor has the excitation wavelength ranging from the ultraviolet region to 500 nm, and exhibit intense yellow light. The strongest luminescence was achieved at about x = 0.02 with the emission peak at 578 nm, slightly shorter than that of Ca-α-SiAlON:Eu2+ phosphor at 581 nm. Temperature-dependent emission intensity of Sr-α-SiAlON:Eu2+ phosphor is comparable to that of Ca-α-SiAlON:Eu2+ phosphor. The results suggest that the different position of the emission peak for Sr- and Ca-α-SiAlON:Eu2+ depends on the composition and the Stokes shift, and the thermal stability is nearly independent of Sr and Ca or fixed by the network of (Si, Al)–(O, N) in α-SiAlON at the same Eu2+ concentration.  相似文献   

13.
Eu2+-Mg2+ co-doped AlON phosphors were prepared by a solid-state reaction route. Their structure and photoluminescence properties were studied. The substitution of Al by Mg favored the formation of pure spinel-type AlON phase and the incorporation of Eu into AlON crystal lattice. Second phase appeared in Eu containing powders. Under ultraviolet excitation at 310 nm, 3% Eu2+-10% Mg2+ co-doped phosphors exhibited a strong broad emission band in the wavelength range of 430-620 nm with a maximum at about 490 nm assigned to the typical 4f65d1-4f7 transition of the Eu2+ ion. Red shift of the emission peak is observed as the increase of Eu2+ concentration due to interaction between Eu2+ ions.  相似文献   

14.
SrZrO3:Eu3+ nanoparticles with a size of about 100 nm were synthesized by a simple gel combustion route and characterized by X-ray diffraction, scanning electron microscopy, dynamic light scattering, and photoluminescence techniques. Based on the time-resolved emission data, it was inferred that three different types of Eu3+ ions were present in the matrix. The first type was a long-lived species (~τ = 6.0 ms) present at symmetric “Sr2+” sites, observed for excitations at 229 and 393 nm. The second was a short-lived species (τ = 1.0 ms) observed for excitations at 229, 296, and 393 nm, while for 296-nm excitation, a long-lived species (τ = 4.0 ms) was also observed. This suggested that Eu3+ ions can be present at relatively lower symmetric “Zr4+” sites with two different environments, which differ in the presence of charge-compensating defects. The color coordinates of the system were evaluated and plotted on a CIE index diagram.  相似文献   

15.
A blue-emitting phosphor of NaMg4(PO4)3:Eu2+, Ce3+ was prepared by a combustion-assisted synthesis method. The phase formation was confirmed by X-ray powder diffraction measurement. Photoluminescence excitation spectrum measurements show that the phosphor can be excited by near UV light from 230 to 400 nm and presents a dominant luminescence band centered at 424 nm due to the 4f65d1 → 4f7 transition of Eu2+ ions at room temperature. Effective energy transfer occurs in Ce3+/Eu2+ co-doped NaMg4(PO4)3 due to large spectral overlap between the emission of Ce3+ and excitation of Eu2+. Co-doping of Ce3+ enhances the emission intensity of Eu2+ greatly by transferring its excitation energy to Eu2+, and Ce3+ plays a role as a sensitizer. Ce3+-Eu2+ co-doped NaMg4(PO4)3 powders can possibly be applied as blue phosphors in the fields of lighting and display.  相似文献   

16.
The photoluminescence spectra of titanium dioxide (TiO2) nanocrystals doped with Eu3+ (molar ratio Eu3+/TiO2 = 0, 1, 2, 4%) are investigated under different excitation wavelengths. An ultraviolet band of emission energy higher than the energy gap is found for excitation wavelengths larger than 315 nm when the Eu3+ content is higher than 2%. The new emission band redshifts and its emission intensity is intensified with the increase of excitation wavelength. The emission mechanism for the new ultraviolet emission band is analyzed.  相似文献   

17.
The Y2O2S:Eu3+,Mg2+,TiIV (xEu = 0.028, xMg = 0.086, xTi = 0.03) materials were prepared with the flux fusion method. According to X-ray powder diffraction, the materials had the hexagonal crystal structure. The emission of Y2O2S:Eu3+,Mg2+,TiIV was centered at 627 nm (λexc : 250 nm) due to the 5D0 → 7F2 transition of Eu3+. The excitation spectra (λem : 627 nm) showed broad bands at 240 and 320 nm due to the O2− → Eu3+ and S2− → Eu3+ charge transfer transitions, respectively. The latter band can also overlap with the Ti → Eu3+ energy transfer. In the excitation spectra with synchrotron radiation, in addition to the O2− → Eu3+ and S2− → Eu3+ charge transfer transitions, excitation over the band gap was observed at 4.8 eV (258 nm). The red persistent luminescence due to the 5D0 → 7F2 emission from Eu3+ residing in the regular Y3+ site of the host was ca. 10 min with 1 min fluorescent lamp irradiation. In addition, a very broad band was observed at 600 nm probably due to the Ti3+ emission.  相似文献   

18.
A new series of Eu3+ ions-activated calcium gadolinium tungstate [Ca2Gd2W3O14] phosphors were synthesized by conventional solid-state reaction method. The X-ray diffraction patterns of the powder samples indicate that the Eu3+: Ca2Gd2W3O14 phosphors are of tetragonal structure. The prepared phosphors were well characterized by scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), Fourier transform infrared spectroscopy (FTIR), photoluminescence (PL), and mechanoluminescence (ML) spectra. PL spectra of Eu3+: Ca2Gd2W3O14 powder phosphors have shown strong red emission at 615 nm (5D0 → 7F2) with an excitation wavelength λ exci = 392 nm (7F0 → 5L6). The energy transfer from tungstate groups to europium ions has also reported. Mechanoluminescence studies of Eu3+: Ca2Gd2W3O14 phosphors have also been explained systematically.  相似文献   

19.
As one kind of new optoelectronic materials, ZnS:Mn nanoparticles/PVP composite nanofibers are prepared by the electrospinning technique successfully. SEM, XRD, FT-IR spectroscopy, photoluminescence and TEM measurements are employed in the study. By the method of annealing, the effect on the morphology and properties of the composite nanofibers is studied. After annealing treatment, the separating state of the nanofibers is improved obviously, ZnS:Mn nanoparticles are well dispersed in the nanofiber, the PL peak originated from 4T16A1 transition of Mn ions shifts from 605 nm to 599 nm. The existence of orange emission peaks confirms that ZnS:Mn nanoparticles are formed in the fibers.  相似文献   

20.

The bulk LiYF4 single crystals with high-quality doped 0.5 mol% Eu3+ and various Gd3+ from 1.5 to 4.5 mol% in size of about Φ 10?×?65 mm were successfully grown by an improved Bridgman method. The X-ray diffraction (XRD) measurement and Rietveld refinement analysis were conducted to verify the structure of the obtained crystal crystals. The spectroscopic properties of the single crystals as change of GdF3 concentration were investigated with the help of absorption, excitation, emission spectra, and decay curves of their fluorescence. The characteristic absorption bands of Gd3+ at 277 nm and Eu3+ at 395 nm were observed in the co-doped samples. Significant enhanced emission intensity of 613 nm was observed as increasing of GdF3 content into Eu3+:LiYF4 single crystal upon excitations of both 277 nm and 395 nm lights. The former was owing to the energy transfer (ET) between Gd3+ and Eu3+, while the latter was due to the change of crystal field environment around Eu3+ by the increasing of GdF3 content. The ET from Gd3+ to Eu3+ ions was further confirmed from the result of the luminescence decay analysis. Besides, the full width half-maximum (FWHM) of 613 nm emission band was estimated to be?~?4.5 nm. The Eu3+/Gd3+ co-doped LiYF4 single crystal with excellent optical and physicochemical properties might has significant applications in red laser and display devices.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号