首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An optimized design for a 210 kg alloy, TiMn alloy based hydrogen storage system for stationary application is presented. A majority of the studies on metal hydride hydrogen systems reported in literature are based on system scale less than 10 kg, leaving questions on the design and performance of large-scale systems unanswered. On the basis of sensitivity to various design and operating parameters such as thermal conductivity, porosity, heat transfer coefficient etc., a comprehensive design methodology is suggested. Following a series of performance analyses, a multi-tubular shell and tube type storage system is selected for the present application which completes the absorption process in 900 s and the desorption process in 2000 s at a system gravimetric capacity of 0.7% which is a vast improvement over similar studies. The study also indicates that after fifty percent reaction completion, heat transfer ceases to be the major controlling factor in the reaction. This could help prevent over-designing systems on the basis of heat transfer, and ensure optimum system weight.  相似文献   

2.
Experimental results for hydrogen storage tanks with metal hydrides used for load leveling of electricity in commercial buildings are described. Variability in electricity demand due to air conditioning of commercial buildings necessitates installation of on-site energy storage. Here, we propose a totalized hydrogen energy utilization system (THEUS) as an on-site energy storage system, present feasibility test results for this system with a metal hydride tank, and discuss the energy efficiency of the system. This system uses a water electrolyzer to store electricity energy via hydrogen at night and uses fuel cells to generate power during the day. The system also utilizes the cold heat of reaction heat during the hydrogen desorption process for air conditioning. The storage tank has a shell-like structure and tube heat exchangers and contains 50 kg of metal hydride. Experimental conditions were specifically designed to regulate the pressure and temperature range. Absorption and desorption of 5,400 NL of hydrogen was successfully attained when the absorption rate was 10 NL/min and desorption rate was 6.9 NL/min. A 24-h cycle experiment emulating hydrogen generation at night and power generation during the day revealed that the system achieved a ratio of recovered thermal energy to the entire reaction heat of the hydrogen storage system of 43.2% without heat loss.  相似文献   

3.
In this study, design and performance analysis is carried out for a 10 kWh metal hydride based hydrogen storage system. The system is equipped with distinctive aluminium hexagonal honeycomb based heat transfer enhancements (HTE) having higher surface area to volume ratio for effective heat transfer combined with low system weight addition. The system performance was studied under different operating conditions. The optimum absorption condition was achieved at 35 bar with water at room temperature as heat transfer fluid where up to 90% absorption was completed in 7200 s. The performance of the reactor was observed to significantly improve upon the addition of the HTE network at a minimal system weight penalty.  相似文献   

4.
This paper presents a two-dimensional mathematical model to evaluate transient heat and mass transfer in a metal hydride tank (hereinafter MHT) with metal foam heat exchanger. The model is validated by comparison with experimental data. A good agreement is obtained.  相似文献   

5.
6.
7.
A 1-D model has been developed to evaluate various designs of metal hydride reactors with planar, cylindrical or spherical geometry. It simulates a cycling loop (absorption–desorption) focusing attention on the heat transfer inside the hydride bed, which is considered the rate-limiting factor. We have validated this model with experimental data collected on two reactors, respectively, containing 1 and 25 g of LaNi5LaNi5, the second being equipped with aluminium foam. The simulation program reproduces accurately our experimental results. The impact of the foam cell size has been studied. According to our model, the use of aluminium foam allows the reactor diameter to be increased by 7.5 times, without losing its performance.  相似文献   

8.
The rate at which hydrogen can be drawn from a metal hydride tank is strongly influenced by the rate at which heat can be transferred to the reaction zone. In this work, the impacts of external convection resistance on thermodynamic behaviour inside the metal hydride tank are examined. A one-dimensional resistive analysis and two-dimensional transient model are used to determine the impact of external fins on the ability of a metal hydride tank to deliver hydrogen at a specified flow rate. For the particular metal hydride alloy (LaNi5) and tank geometry studied, it was found that the fins have a large impact on the pressure of the hydrogen gas within the tank when a periodic hydrogen demand is imposed. Model results suggest that the metal hydride alloy at the centre of the tank can be removed to reduce weight and cost, without detrimental effects to the performance of the system.  相似文献   

9.
The present article reports the activation and testing of large scale metal hydride based hydrogen storage system (MHHSS) for industrial application. The metal hydride reactor is fabricated using SS316 material with 99 embedded cooling tube and filled with 40 kg of LaNi4.7Al0.3. The activation was carried out by successive absorption and desorption processes. In the third absorption cycle, MHHSS had absorbed 552.356 g of hydrogen to reach a maximum storage capacity of 1.4 wt% at 40 bar pressure and 30 °C temperature. The testing of MHHSS was carried out by varying H2 supply pressure, absorption and desorption temperatures and heat transfer fluid (HTF) flow rate. It was observed that the supply pressure has significant effect on absorption rate, and the optimum supply pressure was observed in the range of 10–15 bar. Similarly, during the desorption cycle, optimum desorption temperature was found in the range of 80–90 °C. The optimum flow velocity for HTF was observed in the range of 20–30 lpm.  相似文献   

10.
11.
Along with a brief overview of literature data on energy storage technologies utilising hydrogen and metal hydrides, this article presents results of the related R&D activities carried out by the authors. The focus is put on proper selection of metal hydride materials on the basis of AB5- and AB2-type intermetallic compounds for hydrogen storage and compression applications, based on the analysis of PCT properties of the materials in systems with H2 gas. The article also presents features of integrated energy storage systems utilising metal hydride hydrogen storage and compression, as well as their metal hydride based components developed at IPCP and HySA Systems.  相似文献   

12.
This paper examines the dynamics of metal hydride storage systems by experimentation and numerical modelling. A specially designed and instrumented metal hydride tank is used to gather data for a cyclic external hydrogen load. Thermocouples provide temperature measurements at various radial and axial locations in the metal hydride bed. This data is used to validate a two-dimensional mathematical model previously developed by the authors. The model is then used to perform a parametric study on some of the key variables describing metal hydride systems. These variables are the equilibrium pressure, where the tails and concentration dependence are investigated, and the effective thermal conductivity of the metal hydride bed, where the pressure and concentration dependence are analyzed. Including tails on the equilibrium pressure curves was found to be important particularly for the accuracy of the initial cycles. Introducing a concentration dependence for the plateau region of the equilibrium pressure curve was found to be important for both pressure and temperature results. Effective thermal conductivity was found to be important, and the inclusion of pressure and concentration dependence produced more precise modelling results.  相似文献   

13.
The “low-temperature” intermetallic hydrides with hydrogen storage capacities below 2 wt% can provide compact H2 storage simultaneously serving as a ballast. Thus, their low weight capacity, which is usually considered as a major disadvantage to their use in vehicular H2 storage applications, is an advantage for the heavy duty utility vehicles. Here, we present new engineering solutions of a MH hydrogen storage tank for fuel cell utility vehicles which combines compactness, adjustable high weight, as well as good dynamics of hydrogen charge/discharge. The tank is an assembly of several MH cassettes each comprising several MH containers made of stainless steel tube with embedded (pressed-in) perforated copper fins and filled with a powder of a composite MH material which contains AB2- and AB5-type hydride forming alloys and expanded natural graphite. The assembly of the MH containers staggered together with heating/cooling tubes in the cassette is encased in molten lead followed by the solidification of the latter. The tank can provide >2 h long H2 supply to the fuel cell stack operated at 11 kWe (H2 flow rate of 120 NL/min). The refuelling time of the MH tank (T = 15–20 °C, P(H2) = 100–150 bar) is about 15–20 min.  相似文献   

14.
Hydrogen storage using the metal hydrides and complex hydrides is the most convenient method because it is safe, enables high hydrogen capacity and requires optimum operating condition. Metal hydrides and complex hydrides offer high gravimetric capacity that allows storage of large amounts of hydrogen. However, the high operating temperature and low reversibility hindered the practical implementation of the metal hydrides and complex hydrides. An approach of combining two or more hydrides, which are called reactive hydride composites (RHCs), was introduced to improve the performance of the metal hydrides and complex hydrides. The RHC system approach has significantly enhanced the hydrogen storage performance of the metal hydrides and complex hydrides by modifying the thermodynamics of the composite system through the metathesis reaction that occurred between the hydrides, hence enhancing the kinetic and reversibility performance of the composite system. In this paper, the overview of the RHC system was presented in detail. The challenges and perspectives of the RHC system are also discussed. This is the first review report on the RHC system for solid-state hydrogen storage.  相似文献   

15.
The feasibility of scaling up the production of a Mg-based hydride as material for solid state hydrogen storage is demonstrated in the present work. Magnesium hydride, added with a Zr–Ni alloy as catalyst, was treated in an attritor-type ball mill, suitable to process a quantity of 0.5–1 kg of material. SEM–EDS examination showed that after milling the catalyst was well distributed among the magnesium hydride crystallites. Thermodynamic and kinetic properties determined by a Sievert's type apparatus showed that the semi-industrial product kept the main properties of the material prepared at the laboratory scale. The maximum amount of stored hydrogen reached values between 5.3 and 5.6 wt% and the hydriding and dehydriding times were of the order of few minutes at about 300 °C.  相似文献   

16.
Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnológicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen.  相似文献   

17.
Numerical simulation of a hydrogen storage tank of a Totalized Hydrogen Energy Utilization System (THEUS) for application to commercial buildings was done to verify the practicality of THEUS. THEUS consists of a fuel cell, water electrolyzer, hydrogen storage tank and their auxiliary machinery. The hydrogen storage tanks with metal hydrides for load leveling have been previously experimentally investigated as an important element of THEUS. A hydrogen storage tank with 50 kg AB5 type metal hydride was assembled to investigate the hydrogen-absorbing/desorbing process, which is exothermic/endothermic process. The goal of this tank is to recover the cold heat of the endothermic process for air conditioning, and thus improve the efficiency of THEUS. To verify the practical effectiveness of this improved system, we developed a numerical simulation code of hydrogen storage tank with metal hydride. The code was validated by comparing its results with experimental results. In this code the specific heat value of the upper and lower flanges of the hydrogen storage tank was adjusted to be equal to the thermal capacity of the entire tank. The simulation results reproduce well the experimental results.  相似文献   

18.
This study demonstrates how zirconia additive transforms to zirconium hydride and substantially lowers the dehydrogenation temperature of magnesium hydride. We prepared MgH2+xZrO2 (x = 0.125 and 0.5) powder samples reacted for 15 min, 1 h, 5 h, 10 h, 15 h, 20 h and 25 h, and monitored the phase changes at each stage of the reaction. Differential scanning calorimetry (DSC) study provides the first crucial evidence regarding the chemical transformation of zirconia. Subsequently, detailed additional sample testing by X-ray diffraction (XRD), energy dispersive x-ray spectroscopy and confocal Raman microscopy provide strong supports that low temperature dehydrogenation of magnesium hydride is a result of formation of an active in situ product (zirconium hydride). This observation is validated by the negative Gibbs free energy values obtained for the formation of zirconium hydride over a broad working temperature range of 0–600 °C. Scanning electron microscopy (SEM) results prove the high dispersion of tiny nanoparticles all across the surface after the chemical interaction between MgH2 and ZrO2 and atomic force microscopy (AFM) study further proves that objects with grain sizes of ~10 nm are abundant throughout the scanned surfaces. These observations reiterate that better metal oxide additives interact with MgH2 and results to the evolution of highly active insitu nanocatalysts.  相似文献   

19.
A metal hydride (MH) storage unit and a polymer electrolyte membrane (PEM) fuel cell (FC) stack were thermally integrated through a common water circulation loop. The low temperature waste heat dissipated from the fuel cell stack was used to enhance and ensure the release of hydrogen from the storage unit. A water-heated MH-tank can be made more compact than an air-heated MH-tank with external heating fins, due to more direct heat transfer between MH-alloy and heating/cooling media. A water-heated MH-tank will therefore have the potential for better kinetics for absorption and desorption of hydrogen.  相似文献   

20.
Ammonia (NH3) reacts with alkali metal hydrides MH (M = Li, Na, and K) in an exothermic reaction to release hydrogen (H2) at room temperature, resulting that alkali metal amides (MNH2) which are formed as by-products. In this work, hydrogen desorption properties of these systems and the condition for the recycle from MNH2 back to MH were investigated systematically. For the hydrogen desorption reaction, the reactivities of MH with NH3 were better following the atomic number of M on the periodic table, Li < Na < K. It was confirmed that the hydrogen absorption reaction of all the systems proceeded under 0.5 MPa of H2 flow condition below 300 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号