首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
In this research, the effect of various promoters (Zr, La, Ce, and Y) on the physicochemical features and catalytic activities of the BaO(10)-MnOx prepared by the mechanochemical preparation route was investigated in the catalytic combustion of lean methane. Incomplete methane combustion as a result of the burning of natural gas in industries is the major reason to use a catalytic system to reduce the pollutants formation (NOx, COx, etc.) and improve the combustion efficiency and proceeds towards complete combustion. In our previous study, we performed the methane combustion reaction on the mechanochemical synthesized BaO(x)-MnOx catalysts with various contents of BaO (5–20 wt%), and the results indicated that the addition of 10 wt% of BaO to MnOx could remarkably improve the catalytic efficiency due to the enhance the oxygen mobility and reduction features. In the present study, the structural properties of the synthesized catalysts were specified by XRD, BET, H2-TPR, O2-TPD, and SEM techniques. It is observed from the O2-TPD technique that the addition of promoters into the BaO-MnOx catalyst resulted in the increase in oxygen mobility, which could rise the catalytic activity. The addition of CeO2 has a more positive effect on the catalytic activity due to the higher surface area and oxygen storage capacity. The obtained results revealed that the CeO2(3)-BaO(10)-MnOx catalyst possessed the superior performance in the methane combustion. The 90% of CH4 conversion was obtained at about 350 °C over this catalyst. The effect of calcination temperature, feed ratio, GHSV, hysteresis curve, pretreatment atmospheres, and the presence of CO2 and moisture was evaluated on the catalytic efficiency. After 50 h of continuous reaction at 450 °C, the selected catalyst showed high stability and the catalyst morphology was not significantly altered. Furthermore, CO oxidation was performed over the CeO2(3)-BaO(10)-MnOx catalyst, and the results indicated that the CO conversion was reached 100% at 250 °C.  相似文献   

2.
The Ni/pillared-bentonite catalysts with high BET area were synthesized and used in dry reforming reaction. The effects of different parameters such as calcination temperature, OH/Al3+ ratio, temperature and time of pillaring process and the content of nickel on the textural and catalytic properties of the synthesized catalysts were studied. The results indicated that the 15 wt% Ni catalyst supported on pillared bentonite prepared under specified conditions (OH/Al3+ = 2.2, pillaring temperature of 40 °C and pillaring time of 3 h) possessed the highest BET area (90.80 m2/g). Also, this catalyst possessed higher catalytic activity and stability with lower amount of deposited carbon in comparison to other prepared catalysts in methane reforming with CO2.  相似文献   

3.
In this study, sepiolite as support material, was firstly used to synthesize a series of Co/xLa-SEP catalysts. Besides, a newly proposed biomass, poppy seed, was utilized in gasification for assessment of catalyst activity under various La loadings (0–10 wt% with a 2 wt% increment for each) and temperatures (550, 650, 750, 850 °C). The non-catalytic gasification resulted in the highest H2 concentration of 3.89 mol/kg poppy seed at 850 °C, whereas, the catalyst with 6 wt% La loading showed superior catalytic performance even at the much lower temperature of 650 °C, yielding 4.75 mol H2/kg poppy seed. Based on the results, char formation was almost utterly hindered in presence of 10 wt% La laoding at 850 °C, whereas a significant reduction of tar to 3.83 wt% was attained in corporation of 4 wt% La at 750 °C. The prepared catalysts were characterized by X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA), Fourier Transform Infrared Spectroscopy (FT-IR), Brunauer-Emmett-Teller (BET) and Scanning Electron Microscopy (SEM). SEM images and BET data presented that the Co/6La-SEP catalyst exhibited smallest particle size and the highest surface area (251.05 m2/g).  相似文献   

4.
The catalytic methane decomposition is the leading method for COx-free hydrogen and carbon nanomaterial production. In the present study, calcium-silicate based bimetallic Ni–Fe catalysts have been prepared and used to decompose the methane content of the ‘product gas’ obtained in the biomass gasification process for increasing total hydrogen production. Al2O3 was used as secondary support on calcium silicate based support material where Ni or Ni–Fe were doped by co-impregnation technique. The activity of catalysts was examined for diluted 6% methane-nitrogen mixture in a tubular reactor at different temperatures between 600 °C and 800 °C under atmospheric pressure, and data were collected using a quadrupole mass spectrometer. Catalysts were characterized by XRD, SEM/EDS, TEM, XPS, ICP-MS, BET, TPR, and TGA techniques. The relation between structural and textural properties of catalysts and their catalytic activity has been investigated. Even though the crystal structure of catalysts had a significant effect on the activity, a direct relation between the BET surface area and the activity was not observed. The methane conversion increased by increasing temperature up to 700 °C. The highest methane conversion has been obtained as 69% at 700 °C with F3 catalyst which has the highest Fe addition, and the addition of Fe improved the stability of catalysts. Moreover, carbon nanotubes with different diameter were formed during methane decomposition reaction, and the addition of Fe increased the formation tendency.  相似文献   

5.
5 wt% of Ni/SBA-15 supported with numerous Zr loading (1–7 wt%) were produced using sol-gel technique at 60 °C. The influence of Zr promoter on the physiochemical properties of Ni/SBA-15 catalysts for methane dry reforming were examined in a fixed-bed reactor at 800 °C. Analytical characterizations including XRD, BET, FTIR, N2 adsorption desorption, TEM and TGA were conducted to study the physiochemical properties of Zr/Ni/SBA-15 catalysts for the sake of identification of the amount of coke deposition formed on the spent catalyst. Increasing the amount of Zr loading from 1 to 7 wt% supported on Ni/SBA-15 reduced the catalyst's surface area as was proven from the physiochemical properties of Zr/Ni/SBA-15 catalyst. The catalytic activity test revealed that the optimum Zr loading was 1 wt% at which CH4 and CO2 conversions were 87.07% and 4.01%, meanwhile H2:CO ratios was 0.42. This result was owing to the existence of the Zr species in promoting a good dispersion of Nickel (Ni) active sites on the catalyst surface as affirmed from XRD and FTIR results. The latest discovery indicates that promotion of 1 wt% Zr onto Ni/SBA-15 can prompt excellent catalytic performance in CRM.  相似文献   

6.
Thermocatalytic decomposition of methane is proposed to be an economical and green method to produce COx-free hydrogen and carbon nanomaterials. In this work, the catalytic performance of Ni–Mn–Ru/Al2O3 catalyst under different reaction parameters (such as, pre-reduction temperature, reaction temperature, space velocity, etc.) were investigated to obtain optimum reaction conditions. The catalysts were characterized by N2 adsorption/desorption, X-ray diffraction, inductively coupled plasma optical emission spectrometer and hydrogen temperature programmed reduction. For the 60 wt% Ni-5 wt% Mn-10 wt% Ru/Al2O3 catalyst using Ru(NO)(NO3)x(OH)y(x + y = 3) as Ru precursor, the methane conversion rate obtained is high as 93.76% under optimum reaction conditions (reduction at 700 °C for 1 h, reaction at 750 °C, GSHV = 36,000 mL/gcat h). Carbon nanomaterials formed during the process of methane thermocatalytic decomposition were characterized by scanning electron microscopy, thermal gravimetric analyzer and Raman spectroscopy. Carbon nanofibers were formed over all the Ni–Mn–Ru/Al2O3 catalysts.  相似文献   

7.
A series of xMnCu/Ce catalysts with constant low Cu loading of 1 wt% were prepared by the simple impregnation method. The obtained catalysts were characterized by XRD, BET, H2-TPR and XPS, and the preferential oxidation of CO was evaluated in CO2/H2-rich atmospheres. It was shown that partial Mn and Cu could be incorporated into the Ceria lattice, forming surface ternary Cu–Mn–Ce oxide solid solutions. At Mn/Cu = 0.6, the catalyst presented strong interaction among Cu, Mn and Ce, had more Ce3+ and Mn4+ at the surface and showed the best catalytic performance, making CO conversion increase of 23.57% at 90 °C as compared with the Cu/Ce catalyst. For CO-Prox, the highest CO conversion was 94.7% with an oxidation selectivity of 78.9% at 125 °C. At this temperature, the catalyst revealed stable catalytic performance for a total TOS of 205 h. In addition, with CO/Ar as feed gas, CO conversion was 100%, confirming the negative effects of CO2/H2.  相似文献   

8.
An improved method for hydrogen production by the steam reforming of phenol over novel fly ash-based catalysts is investigated. The Ni/Al2O3-ash catalysts are prepared by an equal-volume impregnation method and characterized by XRD, FESEM, BET and H2-TPR techniques. The effects of various process parameters including mixing ratio of fly ash, temperature, support, gas hourly space velocity (GHSV) and steam-to-carbon molar ratio (S/C) on the catalytic activity are investigated. The results show that fly ash mixing at 50 wt% and choosing γ-Al2O3 as the support own the best performance. A maximum hydrogen yield of 83.8% is achieved at 450 °C with a S/C of 10 and a GHSV of 4968 h?1 with a maximum phenol conversion of 98.6%. The stability of the Ni-ash1-γA1 catalyst is further investigated and it is shown to continuously and stably react for more than 20 h at 450 °C with excellent catalytic reaction stability.  相似文献   

9.
In the present study, the thermocatalytic decomposition of methane (TDM) was performed over the NiO(x)/FeAl2O4 catalysts with various contents of nickel oxide. The FeAl2O4 catalyst support with mesoporous structure and high SBET (80.26 m2 g?1) was synthesized according to the carbonate-based mechanochemical method. The calcined catalysts were characterized by the XRD, BET, H2-TPR, CO2-TPD, TPO, and FESEM analyses. The obtained results demonstrated that the SBET of the synthesized catalysts reduced from 62 to 26 m2 g?1 by increasing the nickel loading from 20 to 60 wt.%, which is ascribed to the blockage of FeAl2O4 support pores. Furthermore, the activity results showed that the catalytic activity improved by increasing the nickel content from 20 to 50 wt.% due to the rise of active site concentration. However, the methane conversion was reached to 40% at 600 °C over the NiO(50)/FeAl2O4 catalyst. The more increment of nickel content decreased the catalytic efficiency due to the decline in active phase dispersion. Moreover, the increment amount of deposited carbon was seen by increasing the weight percentage of NiO. Therefore, the catalyst with 50 wt.% of NiO possessed excellent catalytic potential in the TDM process under the hard operating conditions (GHSV = 50,000 ml.h?1.g?1cat). The influence of GHSV, feed ratio (CH4:N2), calcination temperature, and reduction temperature on the textural properties and catalytic activity of the NiO(50)/FeAl2O4 catalyst were also evaluated in detail.  相似文献   

10.
The CuMn samples with various CuO weight percentages were synthesized by the mechanochemical route. The catalytic activity of the prepared samples was determined in the preferential oxidation of CO process (CO-PROX) in the temperature range of 40–250 °C. According to the XRD results, the 5CuMn and 10CuMn samples exhibited the spinel phase in their structures. The spinel phase formation enhanced the CO adsorption active sites and modified the redox properties. The results indicated that the copper incorporation into the manganese oxide modified the catalytic activity and structural properties. The 5CuMn catalyst with the highest BET area (72.1 m2 g−1) possessed 96% CO conversion and 50% CO2 selectivity at 70 °C (GHSV = 30,000 ml/h.gcat) and significant resistance in the presence of water due to the formation of hydroxyl groups over the catalyst surface. The catalyst activity remained stable for 14 h at 130 °C. Furthermore, the influence of calcination temperature, feed composition, and GHSV value on the catalytic performance of the 5CuMn catalyst was studied.  相似文献   

11.
Ni-La/α-Al2O3 catalysts at different Ni/La ratio of respectively 7/3, 8/2 and 9/1 to obtain a material with total loading of 10 wt% as used in industrial methane steam reforming field are prepared with incipient wetness impregnation method. Various techniques including TGA-DTA, XRF, XRD, particles size, H2-RTP and BET are used to characterize materials and their catalytic performance is evaluated during the steam reforming reaction at different temperatures ranging from 500 to 800 °C. Only NiO and α-Al2O3 phases are evidenced by DRX indicating probably the presence of small lanthanum crystallites in high dispersion state. Addition of La may cause strong change at the surface of NiO sites. Substitute Ni by La leads to smaller and well dispersed NiO particles sizes with strong metal support interaction (SMSI). TPR analysis reveals the reduction of Ni species with high Ni-La-Al interactions particularly well observed with 3 wt%La catalyst. The small Ni particles sizes highly dispersed on the support enhance the dissociative adsorption of CHx species. The highest H2 yield is obtained with 7Ni-3La/Al catalyst reaching 94% at 800 °C.  相似文献   

12.
In this study, catalytic activity of carbon dioxide reforming of methane was investigated over nickel-cobalt catalysts in various structural forms. Catalytic activity tests were performed at the temperatures of 600–800 °C in a micro-flow quartz reactor. SEM-EDX, XRD and XPS studies were also performed to understand the surface morphology of the catalysts. The results showed that 8 wt%Ni-2wt.%Co on wash-coated MgO over monolithic structure led to highest catalytic performances with CH4 and CO2 conversions of 83% and 89% respectively as well as H2/CO ratio of 0.95 at 750 °C. SEM-EDX and XPS results of catalyst spent at 750 °C also showed considerable amount of coke formation; however, the use of 3% oxygen in the feed suppressed the coke formation significantly. The catalyst was stable for 48 h in the presence of O2 (3%) added feed at the temperature of 750 °C.  相似文献   

13.
Mesoporous calcina-modified alumina (Al2O3–CaO) support was produced through the simple and economical co-precipitation method, then nickel (Ni, 10 wt%) and samarium (Sm, 3 wt%) ions loaded by two-solvent impregnation and one-pot strategies. The unpromoted/samarium-promoted catalysts were evaluated using X-ray Diffraction (XRD), High-Resolution Transmission Electron Microscopy (HR-TEM), nitrogen adsorption-desorption, Temperature Programmed Oxidation/Reduction (TPR/TPO), and Field Emission Electron Scanning Microscopy (FE-SEM) methods, then investigated in methane dry reforming. The results revealed that with adding samarium to Ni catalyst through impregnation method, the average Ni crystallite size and specific surface area decreased from 11.5 to 5.75 nm and from 76.08 to 30.9 m2/g, respectively; as a result, the catalytic activity increased from about 50% to 68% at 700 °C. Furthermore, the TPO and FE-SEM tests indicated the formation of carbon with nanotube nature on the catalyst surface.  相似文献   

14.
Novel mixed metal oxide catalyst Ca3.5xZr0.5yAlxO3 was synthesized through the coprecipitation of metal hydroxides. The textural, morphological, and surface properties of the synthesized catalysts were characterized via Brunauer–Emmett–Teller method, X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and energy-dispersive X-ray spectroscopy. The catalytic performance of the as-synthesized catalyst series was evaluated during the transesterification of cooking palm oil with methanol to produce fatty acid methyl esters (FAME). The influence of different parameters, including the calcination temperature (300–700 °C), methanol to oil molar ratio (6:1–25:1), catalyst amount (0.5–6.5 wt%), reaction time (0.5–12 h) and temperature (70–180 °C), on the process was thoroughly investigated. The metal oxide composite catalyst with a Ca:Zr ratio of 7:1 showed good catalytic activity toward methyl esters. Over 87% of FAME content was obtained when the methanol to oil molar ratio was 12:1, reaction temperature 150 °C, reaction time 5 h and 2.5 wt% of catalyst loading. The catalyst could also be reused for over four cycles.  相似文献   

15.
In this research, the effect of alkaline earth promoters (Mg, Sr, Ca and Ba) on the catalytic performance of the 7 wt%Ni-7.5 wt%Cu/CeO2Al2O3 catalyst in high-temperature water gas shift (HTWS) reaction was studied. The mesoporous support was prepared via a simple solid-state method with the BET surface area of 94.46 m2 g−1. The results indicated that among the prepared catalysts, the Ba-promoted catalyst demonstrated a high CO conversion (68.9% at 450 °C) and a low decline in BET area after the reaction. The maximum methane production for this catalyst was lower than that observed for the unpromoted catalyst that could be related to the higher concentration of basic sites in the Ba-promoted catalyst. Although, a higher amount of Ba can improve the selectivity toward water gas shift reaction, increasing the Ba content from 4 wt% to 6 wt% had a negative effect on the activity. Moreover, the addition of Ba to 7Ni-7.5Cu/CeO2Al2O3 improved the long-time stability of the catalyst.  相似文献   

16.
《能源学会志》2020,93(2):482-495
In this research, mesoporous high surface area Ni-Al2O3 catalysts promoted with different transition metals (Cr, Fe, Mn, Cu, and Co) were synthesized via ultrasound-assisted co-precipitation method and their performance was explored in CO2 methanation process. The promoters can affect the textural and catalytic properties of the Ni-Al2O3 catalysts to some extent. Powder X-ray diffraction (XRD), scanning electron microscopy (SEM), temperature programmed reduction with hydrogen (H2-TPR), and N2 adsorption-desorption (BET) were used for the characterization of the prepared samples. From the BET results, it was found that the incorporation of 5 wt% of the promoter into Ni-Al2O3 catalysts caused a decrease in the surface area, NiAl2O4 crystalline size and an increase in the mean pore diameter and total pore volume. Among the samples, the catalyst modified by Mn, exhibited the higher catalytic activity and selectivity towards CH4, especially at low temperatures (200–350 °C). These results could be explained by highest Ni active sites dispersion of this catalyst and enhancement of the catalyst reducibility at the low temperatures. The effect of Mn content was also evaluated and the results revealed that the Ni-Al2O3 sample modified with 3 wt% Mn with the highest BET surface area and the lowest crystalline size possessed the best catalytic performance. To further investigate the influence of ultrasonic irradiation, the optimal catalyst was prepared with a conventional co-precipitation method and its textural and catalytic properties were compared with those obtained for the catalyst prepared with the ultrasonic assisted coprecipitation method. Also, 25Ni-3Mn-Al2O3 catalyst showed a stable performance at 350 °C for 10 h in the CO2 methanation reaction.  相似文献   

17.
Catalytic methane decomposition can become a green process for hydrogen production. In the present study, yttria doped nickel based catalysts were investigated for catalytic thermal decomposition of methane. All catalysts were prepared by sol-gel citrate method and structurally characterized with X-ray powder diffraction (XRD), scanning electron microscopy-energy dispersive spectroscopy (SEM-EDS) and Brunauer, Emmet and Teller (BET) surface analysis techniques. Activity tests of synthesized catalysts were performed in a tubular reactor at 500 ml/min total flow rate and in a temperature range between 390 °C and 845 °C. In the non-catalytic reaction, decomposition of methane did not start until 880 °C was reached. In the presence of the catalyst with higher nickel content, methane conversion of 14% was achieved at the temperature of 500 °C. Increasing the reaction temperature led to higher coke formation. Lower nickel content in the catalyst reduced the carbon formation. Consequently, with this type of catalyst methane conversion of 50% has been realized at the temperature of 800 °C.  相似文献   

18.
The behavior of selective hydrogen combustion (SHC) in the presence of propylene and propane changing with reaction temperature in a range of 100–600 °C has been investigated over the Pt catalysts supported on A-zeolites. The effect of Pt loading varying from 0.01 to 2 wt% on the catalytic SHC performance has been studied in the conditions with a feed gas molar composition of C3H8/C3H6/H2/O2 = 4/4/4/2 balanced with N2 and gas hourly space velocity of 15,000 h−1. The results show that for each Pt/3A catalyst having a different Pt loading there is a maximum of H2 conversion by combustion appearing between 300 and 400 °C, while the selectivity to comprehensive H2 conversion can maintain 100% when the temperature lower than 300 °C. Moreover, the Pt/3A catalyst with a Pt loading of 0.5 wt % performs better than the others at the temperatures higher than 300 °C. The maximal H2 combustion achieved over the 0.5 wt% Pt/3A catalyst is as high as 96.6% along with a selectivity of 100% at 300 °C, and a 92.4% H2 combustion with 98.5% selectivity can be obtained even if at 500 °C. The characterization of the catalysts reveals that the distribution of Pt atoms and the number of atoms in Pt clusters may be the key factors for giving rise to the good SHC performance. The influence of three types of A-zeolite supports on the Pt catalyzed SHC process has also been investigated. 3A zeolite is superior to 4A and 5A for supporting 0.5 wt% Pt catalyst in terms of both activity and selectivity. The lower C3H6 conversion on the 0.5 wt% Pt/3A catalyst compared to the 0.5 wt% Pt/5A may be ascribed to the insufficient sites for the C3H6 activation on the surface of Pt/3A due to the limitation of 3A channels inaccessible to C3H6. This contrarily brings about the better SHC performance on the 0.5 wt% Pt/3A catalyst.  相似文献   

19.
A comparative study of 10 wt% Co-based catalysts supported on La2O3, AlZnOx and AlLaOx was performed for glycerol steam reforming (GSR). The catalysts physicochemical characterization was done through several techniques. All catalysts were screened in terms of catalytic activity and time-on-stream stability for GSR. The catalytic activity experiments aimed to assess the effect of temperature (400–700 °C) on the glycerol conversion and yield of gaseous products (H2, CO2, CO and CH4). Additionally, catalytic stability experiments were conducted at 625 °C to investigate deactivation of the catalysts, in which a drop in the activity was observed, especially for Co/La2O3. The glycerol conversion into gaseous products as a function of the time-on-stream was more affected for all catalysts in comparison to total glycerol conversion, being this effect assigned to the increase in the formation of liquid products and to the formation of coke. CoAlLaOx was observed to be more carbon-resistant, followed by CoAlZnOx, through the measurement of the quantity of carbonaceous species formed during the GSR experiments. A NiAlLaOx catalyst was also prepared and assessed in terms of catalytic stability for GSR; a stable behavior was observed throughout all experiment in relation to glycerol conversion into gaseous products and H2 yield.  相似文献   

20.
Hydrogen production from dry reforming of methane (DRM) was investigated on different Nickel based catalysts deposited on MgAl2O4. MgAl2O4 spinel was prepared using γ-Alumina supplied from different manufacturers (Sigma Aldrich, Alfa Aesar and Degussa) with low and high specific surface area. Moreover, the influence of different parameters on the catalytic activity on methane dry reforming was studied such as the effect of Ni content, the effect of commercial alumina and the effect of doping nickel with cerium and lanthanum.During this study, the catalytic activity was compared at atmospheric pressure at 750 °C during 4 h then 650 °C during 4 h toward methane dry reforming (DRM) reaction with a molar ratio CH4/CO2 = 1/1 and a Weight Hourly Space Velocity (WHSV) of 60.000 mL g−1.h−1. The results showed that among the different catalysts 1.5Ce–Ni5/MgAl2O4, synthesized with alumina from Alfa Aesar, exhibited the best catalytic activity for DRM.Furthermore, this catalyst showed the best performance during a stability test at 600 °C for 24 h under reacting mixture with a low carbon formation rate (2.71 mgC/gcat/h). Such superior activity is consistent with characterization results from BET, XRD, SEM, TPR and TPO analysis. Furthermore, it seems that the addition of Cerium on Ni/MgAl2O4 leads to an increase in catalyst efficiency. It can be due to an effective active oxygen transfer due to the redox properties of CeO2, leading to the formation of oxygen vacancies offering a benefit for DRM reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号