首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Single-phase poly crystalline chalcopyrite-structure ZnGeAs2 ingots with an average grain size of 70 μm have been grown using a modified vertical Bridgman apparatus. The melting point of the compound was determined by differential thermal analysis (DTA) to be 860°C and corrected X-ray diffraction (XRD) peak positions were obtained. The crystals were p type with a room-temperature carrier concentration of 1.1 × 1019 cm?3 and a corresponding mobility of 15 cm2/V s. A possible chalcopyrite-to-sphalerite phase transition, reported previously to occur to 812°C, was not observed either by DTA or by XRD of quenched samples.  相似文献   

2.
Homogeneous crystals of Cd.95Mn.05Se of high optical quality have been grown by a modified Bridgman method. Magnetic susceptibility measurements verify the uniform distribution of Mn(II) obtained after annealing at 600°C.Crystals grown in the presence of 5 atomic percent excess selenium showed high resistivity; the addition of 1 mg iodine to a 10 g charge resulted in n-type conductivity and a room-temperature carrier concentration of 2.9 × 1016 cm?3. The Hall mobility of these crystals was approximately 290 cm2 V?1 sec?1.  相似文献   

3.

The single crystals of quaternary transition metal chalcogenide Cu2ZnSnS4 (CZTS) are grown by a closed system chemical vapor transport technique. The high purity individual elemental precursors are employed in the growth of the crystals. These crystals are found to be single-phase by X-ray diffraction and Raman analysis. The near stoichiometry of the grown crystals is confirmed by spectroscopy analysis of the photoelectron generated by X-rays and analysis of the energy of the dispersive X-rays generated by electrons. The surface study by scanning electron microscopy showed the growth to happen by sheet spread mean and the electron diffraction showed fringe width match with (112) plane spacing. The study of the CZTS/Ag-paste/Cu-wire system for incident white light and three wavelengths of laser lights in two configuration modes of top-contact (II to the plane) and bottom-top-contact (⊥ to the plane) showed anisotropic behavior. The incident white light illumination intensity of 120 mW/cm2 showed utmost photoresponse. The top-contact mode configuration showed maximum responsivity and detectivity of 0.72 mA/W and 0.33 × 109 Jones, respectively, while bottom-top-contact showed 0.18 mA/W and 0.13 × 109 Jones, respectively. The anisotropic photoresponse by the CZTS crystals insinuates the potential for future applications.

  相似文献   

4.
Single crystals of defect III–VI semiconductors Ga2Te3 and In2Te3 have been grown by the Bridgman method. Capacitance vs frequency measurements have been carried out from which the low frequency dielectric constants ?5 have been determined to be 10.95 ± 0.26 and 12.3 ± 0.13 respectively. These values are compared with the high-frequency dielectric constants ?60 calculated from the Phillips' model. Dark conductivity and photoconductivity have been studied as a function of annealing upto 210°C, maxinum photosensitivity being obtained for both crystals for Tanneal = 80°C. This behaviour has been related to lattice ordering through x-ray diffraction studies. Measurements of photo conductive gain indicate carrier life-times of 2 × 10?4s and 5 × 10?4s respectively at room-temperature.  相似文献   

5.
Wurtzite (Wz) and kesterite (Ks) phases of Cu2ZnSnS4 (CZTS) nanoparticles (NPs) have been selectively synthesized via hot injection method using 1-octadecene (1-ODE) as solvent. The solvents, 1-dodecanethiol (1-DDT) and tert-dodecanethiol (t-DDT) were utilized to control the reactivity of metal precursors and to tune the desirable crystallographic phases. The phase purity of the as synthesized CZTS NPs was confirmed using X-ray diffraction results. TEM images indicate that the developed nanoparticles consist of a mixture of triangular shaped (height 20?±?3 nm, width 17?±?2 nm) and sphere shaped NPs (13.4?±?0.4 nm). These nanoparticles were formed due to the influence of thiols without any additional capping ligands. The band gap of as-synthesized CZTS NPs were calculated as 1.41 eV for wurtzite phase (Wz—1-DDT) and 1.47 eV for kesterite phase (Ks—t-DDT) from UV–Visible absorption results. CZTS thin films were prepared via spin coating and the electrical properties were analysed using Hall Effect measurements. Both the phases of CZTS films exhibit p-type conductivity. Wurtzite phase of CZTS has higher mobility (23.6 cm?3) and carrier concentration (2.64?×?1017) compared to kesterite phase of CZTS films.  相似文献   

6.
This study reports the preparation of Cu2ZnSnS4 (CZTS) thin films by magnetron sputtering deposition with a Cu–Zn–Sn ternary alloy target and sequential sulfurization. The effects of substrate temperatures on the structural, morphological, compositional as well as optical and electrical properties were characterized. The results showed the CZTS thin films prepared by sulfurization at substrate temperature of 570 °C yielded secondary phases along with CZTS compound. The relatively good properties of CZTS thin film were obtained after sulfurization at substrate temperature of 550 °C. This CZTS film showed compact structure with large grain size of 900 nm, direct optical band gap of 1.47 eV, optical absorption coefficient over 104 cm?1, resistivity of 4.05 Ω cm, carrier concentration of 8.22 × 1018 cm?3, and mobility of 43.38 cm2 V?1 S?1.  相似文献   

7.
In this paper, we report the two stage growth of Cu2ZnSnS4 (CZTS) thin films as a function of sulfurization time. First, magnetron sputtered metallic precursors were deposited sequentially (Zn/Cu/Sn/Cu) over rotating glass substrates held at 230?°C. Later, the sputtered precursors were heat treated at 500?°C in the ambiance of sulfur for various time durations in the range, 10–120 min. The sulfur treated samples were examined using various analytical tools to understand the role of sulfurization time on the CZTS growth and properties. From composition and structural analysis, Zn/Cu/Sn/Cu precursors sulfurized for shorter duration (10 and 20 min) revealed severe deficiency of sulfur that resulted in several metallic, bi-metallic and metal sulfide phases. With the increase of sulfurization time to 30 min, sulfur incorporation was enhanced and reached stoichiometric ratio (~50% S) for CZTS growth, however, samples were poorly crystalline in nature and consisted of prominent Cu2?xS phase as well. The Zn/Cu/Sn/Cu precursors sulfurized for 60 min exhibited prominent CZTS phase without Cu2?xS phase. Further, rise in sulfurization time to 120 min enabled drastic improvement in crystallinity of CZTS phase. Raman mapping over 60 µm × 60 µm for these films confirmed the homogeneous phase growth of CZTS. XPS study revealed the oxidation states of Cu1+, Zn2+, Sn4+ and S2? in CZTS films. The optimized films showed high absorption coefficient of 105 cm?1 with an optical band gap of 1.51 eV. These films showed leaf like grain morphology with high mobility and low resistivity of 18.2 cm2/V-s and 0.7 Ω-cm, respectively.  相似文献   

8.
Kesterite, Cu2ZnSnS4 (CZTS), is a promising absorber layer for use in photovoltaic cells. We report the use of copper, zinc and tin xanthates in melt reactions to produce Cu2ZnSnS4 (CZTS) thin films. The phase of the as-produced CZTS is dependent on decomposition temperature. X-ray diffraction patterns and Raman spectra show that films annealed between 375 and 475 °C are tetragonal, while at temperatures <375 °C hexagonal material was obtained. The electrical parameters of the CZTS films have also been determined. The conduction of all films was p-type, while the other parameters differ for the hexagonal and tetragonal materials: resistivity (27.1 vs 1.23 Ω cm), carrier concentration (2.65 × 10+15 vs 4.55 × 10+17 cm?3) and mobility (87.1 vs 11.1 cm2 V?1 s?1). The Hall coefficients were 2.36 × 103 versus 13.7 cm3 C?1.  相似文献   

9.
The growth of barium-cadmium formate BaCd(HCO2)4·2H2O single crystals by slow cooling method and their characterization by selective etching are reported. It was found that BaCd(HCO2)4·2H2O crystallizes from aqueous solution in 2/m class of the monoclinic system. Crystals grown during a period of 1 month have dimensions of about 2 × 1.5 × 10 cm3. The typical twinning for these crystals has been observed and investigated by the selective etching. The dislocation density has been estimated to be 3·102 – 2·103 cm?2.  相似文献   

10.
The single crystals with stoichiometry close to 1:1:2 of CuInTe2 (CIT) have been grown by chemical vapor transport (CVT) technique using iodine as the transporting agent at different growth temperatures. Single crystal X-ray diffraction studies have confirmed the chalcopyrite structure for the grown crystals and the volume of unit cell is found to be the same for the crystals grown at different conditions. Energy dispersive X-ray (EDAX) analysis of CIT single crystals grown shows almost the same stoichiometric compositions. Scanning electron microscope (SEM) analysis reveals kink, step and layer patterns on the surface of CIT single crystals depending on the growth temperatures. The optical absorption spectra of as-grown CIT single crystals grown at different conditions show that they have same band gap energies (1.0405 eV). Raman spectra exhibit a high intensity peak of A1 mode at 123 cm?1. Annealed at 473 K in nitrogen atmosphere for 40 h CIT single crystals have higher hole mobility (105.6 cm2V?1s?1) and hole concentration (23.28 × 1017 cm?3) compared with values of hole mobility (63.69 cm2 V?1 s?1) and hole concentration (6.99 × 1015 cm?3) of the as-grown CIT single crystals.  相似文献   

11.
This work reports on optical spectra of Na5Lu9F32 single crystals doped with various Er3+ concentrations from 0.5 to 5 mol%. In our improved Bridgman method, the X-ray powder diffractions were investigated and optical parameters were also calculated by the Judd–Ofelt theory. Results showed that Er3+ ions entered the Lu3+ sites successfully without causing any obvious peak changes, and the doping concentration of Er3+ had important influence on the Er3+ local structure in Na5Lu9F32 crystals. The maximum emission intensities of ~1.5 and ~2.7 μm were obtained in present research when the doping concentration of Er3+ were 4 and 5 mol%, respectively, under the excitation of 980 nm LD. In these doping concentration, the maximum emission cross-sections were calculated to be 1.37 × 10?20 cm2 (~1.5 μm) and 2.1 × 10?20 cm2 (~2.7 μm). The gain cross-section at 2.7 μm was also estimated according to the absorption and emission cross section spectra. All these spectroscopic characterizations suggested that this fluoride crystal would possess promising applications in infrared lasers.  相似文献   

12.
Cu2ZnSnS4 (CZTS) films were obtained by sulfurizing (Cu, Sn) S/ZnS structured precursors prepared by a combination of the successive ionic layer absorption and reaction method and the chemical bath deposition method, respectively. The effect of sulfurization time on structure, composition and optical properties of these CZTS thin films was studied. The results of energy dispersive spectroscopy indicate that the annealed CZTS thin films are of Cu-poor and Zn-rich states. The X-ray diffraction studies reveal that Cu2?x S phase exists in the annealed CZTS thin film prepared by sulfurization for 20 min, while the Raman spectroscopy analysis shows that there is a small Cu2SnS3 phase existing in those by sulfurization for 20 and 40 min. The band gap (E g ) of the annealed CZTS thin films, which are determined by reflection spectroscopy, varies from 1.49 to 1.56 eV depending on sulfurization time. The best CZTS thin film is the one prepared by sulfurization for 80 min, exhibiting a single kesterite structure, dense morphology, ideal band gap (E g  = 1.55 eV) and high optical absorption coefficient (>104 cm?1).  相似文献   

13.
Cu2ZnSnS4 (CZTS) thin films were deposited by sol–gel spin coating using precursor solutions prepared with copper acetate, zinc acetate, tin chloride, and thiourea in methanol and ethylenediamine followed by sulfurization. Sol–gel precursor solutions were prepared with different amounts of sulfur and copper, and their effects on film growth, crystal properties, and optical properties of CZTS films were investigated. CZTS film thickness increased with the amount of metal salt in the precursor solution. This is attributed to an increase in solution viscosity and a decrease in the solution density/viscosity ratio. All CZTS thin films exhibited kesterite structures with absorption coefficients larger than 104 cm?1 in the visible region. Band gap energy increased with increasing amounts of sulfur and decreasing amounts of copper. The blue shift of the band gap is attributed to changes in the degree of pd hybridization related to Cu d- and S p-levels. The role of sulfur and copper on Hall mobility and carrier concentration was investigated. By optimizing the metal salt ratio in the precursor, CZTS film with a resistivity of 5.3 × 10?2 Ωcm were prepared.  相似文献   

14.
Ho3+-modified Pb(Zn1/3Nb2/3)O3–9PbTiO3 (PZN–9PT) single crystals were grown through a flux method. Phase structure and microstructural morphology of the as-grown single crystals were performed by X-ray diffraction analysis and scanning electron microscopy. The refinement of the lattice parameters were obtained by the Rietveld method. The electrical properties of PZN–9PT single crystals were improved significantly by the modification of Ho3+ ions. The rhombohedral–tetragonal phase transition temperature, Curie temperature, coercive field at 15 kV cm?1, and remnant polarization of Ho3+-modified PZN–9PT single crystals were increased by 14, 42 K, 2.4 kV cm?1, and 7.5 μC cm?2, respectively (i.e., 375.45, 448.45 K, 5.9 kV cm?1, and 38.40 μC cm?2, respectively). Furthermore, Lorentz-type law was used to describe the dielectric relaxor behavior of the as-grown single crystals.  相似文献   

15.
Bulk ingots of polycrystalline Ga1?xAlxSb solid solutions have been prepared by a vertical Bridgman method. The variations of the alloy composition were studied along and normal to the growth axis, in connection with the imposed temperature gradient. The segregation of germanium and tellurium dopants was measured. The GaSb AlSb phase diagram has been investigated and theoretically calculated using a regular solution model. The electrical properties of the as grown alloys have been determined. n-type Ga1?xAlxSb alloys were obtained by Te doping as undoped crystals were p-type, with generally a carrier concentration of about 1017 cm?3. The variations versus T?1 of the Hall coefficient, the resistivity and the mobility are given for some p- and n-type samples.  相似文献   

16.
Cu2ZnSnS4 (CZTS) thin films were prepared by sulfurizing single-layered metallic Cu–Zn–Sn precursors which were deposited by DC magnetron sputtering using a Cu–Zn–Sn ternary alloy target. The composition, microstructure and properties of the CZTS thin films prepared under different sputtering pressure and DC power were investigated. The results showed that the sputtering rate of Cu atom increases as the sputtering pressure and DC power increased. The microstructure of CZTS thin films can be optimized by sputtering pressure and DC power. The CZTS thin film prepared under 1 Pa and 30 W showed a pure Kesterite phase and a dense micro-structure. The direct optical band gap of this CZTS thin film was calculated as 1.49 eV with a high optical absorption coefficient over 104 cm?1. The Hall measurement showed the film is a p-type semiconductor with a resistivity of 1.06 Ω cm, a carrier concentration of 7.904 × 1017 cm?3 and a mobility of 7.47 cm2 Vs?1.  相似文献   

17.
Copper zinc tin sulfide (CZTS, Cu2ZnSnS4) is a low band gap semiconductor that is attractive for use in solar cells. We investigated the dependence of the structure and properties of CZTS thin films on the temperature used to sulfurize precursor thin films composed of copper, zinc and tin fabricated by electrochemical deposition. The precursor films were sulfurized in a furnace with three zones, which allowed fine control of the sulfurization temperature between 250 and 400 °C. X-ray diffraction and Raman spectroscopic measurements confirmed that the films were composed of CZTS following sulfurization. The grain size and crystallinity of the films increased with sulfurization temperature. The composition of CZTS also varied with sulfurization temperature. The proportions of Cu and Zn increased while that of Sn decreased with increasing sulfurization temperature. Absorption and reflectance spectra revealed that the absorption coefficients and band gaps of the CZTS films varied with sulfurization temperature between 3–4.1 × 104 cm?1 and 1.4–1.53 eV, respectively. Solar cells containing CZTS sulfurized at 400 °C showed a maximum efficiency of 2.04 %, which was attributed to the higher crystallinity and larger grain size of CTZS compared with thin films sulfurized at lower temperatures. Our results show that control of sulfurization temperature is an important factor in optimizing the performance of CZTS thin films in solar cells.  相似文献   

18.
Inorganic cesium lead halide perovskite single crystals are particularly intriguing to ionizing radiation detection by virtue of their material stability and high attenuation coefficients. However, the growth of high-quality inorganic perovskite single crystals remains challenging, mainly due to the limited solubility. In this work, an additive-enhanced crystallization method is proposed for cesium lead perovskites. The additive can remarkably increase the solubility of cesium bromide in dimethyl sulfoxide (DMSO) forming a balanced stoichiometric precursor solution, which prevents the formation of impurity phases. In addition, the additives would react with DMSO generating glyoxylic acid (GLA) via nucleophilic substitution and Kornblum oxidation reactions. The GLA can form stable PbBr2-DMSO-GLA complexes, which enables better crystallinity, uniformity and much longer carrier lifetimes for the grown single crystals. The X-ray detectors using the additive-enhanced crystals exhibit an ultra-high sensitivity of 3.0 × 104 µC Gyair−1 cm−2 which is more than two orders of magnitude higher than that for the control devices.  相似文献   

19.
The phase diagram of Cu3SbSe4 indicates that this material is not a congruently melting compound, but that it forms via a peritectic reaction at about 390°C. The material grown either by a Bridgman or quenching process is p-type, with carrier concentrations of about 2 × 1019/cm3 and 3 × 1018/cm3, respectively. The addition of Zn produces n-type crystals with a carrier concentration of 3 × 1017/cm3. The room temperature energy gap of Cu3SbSe4 is 0.25 ± .05 eV as determined by optical absorption. Cu3AsSe4 was also prepared but was not congruently melting, while Cu3AsTe4 and Cu3SbTe4 apparently do not form.  相似文献   

20.
Manganese has been studied as a new acceptor impurity in bulk InP. Large single crystals which possess the lowest hole concentrations yet reported, 3 × 1014 cm?3, have been grown by the liquid encapsulated Czochralski pulling technique. This low carrier level is due to the low distribution coefficient for the electrically active manganese, kactive = 4 × 10?3 and the high activation energy, 0.30 eV. In comparison, the acceptor commonly used to produce p-type material in InP, Zn, has a distribution coefficient of ≈1.0 which makes it especially difficult to achieve the low hole concentrations necessary for certain device applications. Optical absorption and photoluminescence data are also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号