首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two-dimensional Mo2C (2D-Mo2C) is reported for the first time as an effective promoter of a Pt/Al2O3 catalyst for both the hydrogenation and dehydrogenation of the liquid organic hydrogen carrier (LOHC) pair, dibenzyltoluene (DBT) and perhydro-dibenzyltoluene (H18-DBT), respectively. Addition of 6.2 wt% 2D-Mo2C to a Pt/Al2O3 catalyst resulted in a significant increase in both the degree of hydrogenation and dehydrogenation compared to the unpromoted catalyst. An analysis of the initial (120 min) perhydro-DBT dehydrogenation kinetics in the temperature range of 270–330 °C, resulted in a reduction in apparent activation energy from 119.5 ± 3.8 kJ/mol for the Pt/Al2O3 catalyst to 110.4 ± 5.6 kJ/mol for the 6.2 wt% 2D-Mo2C/Pt/Al2O3 catalyst. The 6.2 wt% 2D-Mo2C/Pt/Al2O3 catalyst was also more stable than the unpromoted catalyst over several consecutive cycles of hydrogenation and dehydrogenation. Catalyst characterization showed that addition of 2D-Mo2C resulted in an increase in particle size and electron density of the Pt, which enhanced both the hydrogenation and dehydrogenation reactions, despite the fact that the 2D-Mo2C alone was inactive for both reactions.  相似文献   

2.
The heat transfer oil dibenzyltoluene (DBT) offered an intriguing approach for the scattered storage of renewable excess energy as a novel Liquid Organic Hydrogen Carrier (LOHC). The integration of hydrogenation and dehydrogenation in H0-DBT/H18-DBT pairs demonstrated that the feasibility of hydrogenation and dehydrogenation reaction conducted in one reactor with the same catalyst, which would be proposed to simplify the hydrogen storage process. The optimal reaction temperature based on the inhibition of ring opening and cracking was investigated combined with the 1H NMR analysis. Meanwhile, the ideal catalyst 3 wt% Pt/Al2O3 for high hydrogen storage efficiency was screened out. Cycle tests of hydrogenation and dehydrogenation integration reaction had shown that the hydrogen storage efficiency was 84.6% after five cycle tests. The integration of hydrogenation and dehydrogenation reaction based on DBT exhibited the ideal thermal stability, which demonstrated its potential as a reversible H2 carrier.  相似文献   

3.
This contribution investigate the effect of parameters for production of hydrogen by catalytic dehydrogenation of perhydrodibenzyltoluene (H18-DBT). The sensitivity of the dehydrogenation reaction to temperature (290–320 °C) is justified by an increase in degree of dehydrogenation (DoD) from 40 to 90% when using 1 wt % Pt/Al2O3 catalyst. However, the increase in temperature increases the hydrogen production rate and decreases the hydrogen purity by increasing the formation of by-products. In addition, the DoD of 96% is obtained when 2 wt % Pt/Al2O3 is used at 320 °C. The DoD obtained for Pd, Pt, and Pt–Pd catalysts is 11, 82 and 6%, respectively. Therefore, Pd is not a metal of choice for dehydrogenation of H18-DBT, in both monometallic and bimetallic system. The ab-initio density functional theory (DFT) calculations are consistent with this observation. Furthermore, dehydrogenation of H18-DBT followed 1st order reaction kinetics and the activation energies for 1 wt % Pt/Al2O3, 1 wt % Pd/Al2O3 and 1:1 wt % Pt–Pd/Al2O3 catalysts are: 205, 84 and 66 kJ/mol, respectively.  相似文献   

4.
The morphologies and the electron property of catalysts play the very important roles in the hydrogenation and dehydrogenation of liquid organic hydrogen carriers (LOHCs) such as dibenzyltoluene (DBT). The different morphologies and pore structures of γ-Al2O3 and MoxC doped γ-Al2O3 were synthesized as the supports for Pt catalysts. After analyzing of various characterizations and catalytic testing, it was found that the large surface area and the mesoporous structure of catalysts are beneficial to both DBT hydrogenation and perhydro-dibenzyltoluene (H18-DBT) dehydrogenation. The doping of MoxC promoted the formation of the smaller Pt nanoparticles and increased Pt dispersion. The forming Pt–Mo structure is beneficial to hydrogen spillover which suppress the formation of by-product. The high Pt dispersion of 0.1 wt% MoxC doped Pt/Al2O3 catalyst plays the positive roles in increasing H18-DBT dehydrogenation activity.  相似文献   

5.
Highly dispersed Pd nanoparticles immobilized in MIL-101 (Pd@MIL-101) were prepared and used for the catalytic dehydrogenation of Liquid organic hydrogen carriers (LOHC). The as-synthesized catalysts were characterized and it was found that 3 wt% of Pd@MIL-101 embodied smaller and highly dispersed Pd NPs. The catalytic activities of as-synthesized catalysts were investigated by the dehydrogenation of a representative LOHC compound, perhydro-N-propylcarbazole (12H-NPCZ). The results indicated that 3 wt% Pd@MIL-101 catalyst exhibited good catalytic activity and good reusability for the dehydrogenation of 12H-NPCZ, which is superior to that of commercial 5 wt% Pd/Al2O3 catalyst. This study demonstrates that Pd@MIL-101 is a promising dehydrogenation catalyst for the application of LOHC technology.  相似文献   

6.
Hydrogen being a dynamically impending energy transporter is widely used in hydrogenation reactions for the synthesis of various value added chemicals. It can be obtained from dehydrogenation reactions and the acquired hydrogen molecule can directly be utilized in hydrogenation reactions. This correspondingly avoids external pumping of hydrogen making it an economical process. We have for the first time tried to carryout 1,4-butanediol dehydrogenation and benzaldehyde hydrogenation simultaneously over ceria-alumina supported copper (Cu/CeO2–Al2O3) catalyst. In this concern, 10 wt% of Cu supported on CeO2–Al2O3 (3:1 ratio) was synthesized using wet impregnation method. The synthesized catalyst was then characterized by various analytical methods such as BET, powder XRD, FE-SEM, H2-TPR, NH3 and CO2-TPD, FT-IR and TGA. The catalytic activity towards simultaneous 1,4-butanediol dehydrogenation and benzaldehyde hydrogenation along with their individual reactions was tested for temperature range of 240 °C–300 °C. The physicochemical properties enhanced the catalytic activity as clearly interpreted from the results obtained from the respective characterization data. The best results were obtained with 10 wt% of Cu supported on CeO2–Al2O3 (3:1 ratio) catalyst with benzaldehyde conversion of 34% and 84% selectivity of benzyl alcohol. The conversion of 1,4-butanediol was seen to be 90% with around 95% selectivity of γ-butyrolactone. The catalyst also featured physicochemical properties namely increased surface area, higher dispersion and its highly basic nature, for the simultaneous reaction towards a positive direction. In terms of permanence, the Cu/CeO2–Al2O3 (10CCA) catalyst was quite steady and showed stable activity up to 24 h in time on stream profile.  相似文献   

7.
Liquid organic hydrogen carrier (LOHC) is considered as a promising candidate for large-scale hydrogen storage. In this work, we found that Pt/TiO2 catalysts exhibited better catalytic activity and selectivity compared to Pd/TiO2 and commercial Pd/Al2O3 catalysts in the dehydrogenation of dodecahydro-N-ethylcarbazole (12H-NECZ) at 453 K. The catalytic activity of the noble metal catalysts followed the trend of Pt/TiO2 > Pd/TiO2 > Rh/TiO2 > Au/TiO2 > Ru/TiO2. Compared with the commercial Pd/Al2O3, Pt/TiO2 greatly improved the selectivity and conversion rate, the reaction time was also shortened. In addition, kinetics calculation was carried out to obtain fundamental reaction parameters. It was found that the third step of 4H-NECZ dehydrogenation to NECZ was the rate-limiting step of the entire dehydrogenation reaction for all catalysts.  相似文献   

8.
The water–gas shift reaction (WGSR) performance was experimentally studied using Pt-based catalysts for temperature, time factor and steam to carbon (S/C) molar ratio at ranges of 750–850 °C, 10–20 gcat h/molCO, and 1–5, respectively. Al2O3 spheres were used as the catalyst support. For the high S/C cases, it was found that CO conversion can be enhanced when Pt/CeO2/Al2O3 catalyst was used as compared with Pt/Al2O3. For the low S/C ratio cases, CO conversion enhancement was not significant with the addition of CeO2. It was also found that CO conversion was not influenced by the CeO2 amount to a large extent. Using bimetallic Pt–Ni/CeO2/Al2O3 catalyst, it was found that higher CO conversion can be obtained as compared with CO conversions obtained from monometallic catalysts (Pt/Al2O3 or Pt/CeO2/Al2O3). The experimental data also indicated that good thermal stability can be obtained for the Pt-based catalysts studied.  相似文献   

9.
Palladium/platinum-based catalysts are widely used in the dehydrogenation process of Liquid Organic Hydrogen Carriers (LOHCs). The cost of noble metal has become a main drawback for LOHCs large-scale application. Partial replacement of Pd/Pt by other transition metals can be an effective solution. In this paper, we synthesize the bimetallic Pd–Ni catalyst by incipient wet impregnation and the catalytic dehydrogenation performance of perhydro-N-propylcarbazole (12H-NPCZ) as a LOHC candidate. Ni and Pd were impregnated on mesoporous alumina to obtain both monometallic and bimetallic catalysts, i.e. Pd/Al2O3, Ni/Al2O3 and Pd–Ni/Al2O3 (Pd:Ni = 1:1) with total metal loading of 5 wt%, respectively. The above catalysts were characterized by N2-adsorption/desorption, H2-temperature programmed reduction, X-Ray diffraction, X-Ray photoelectron spectroscopy, Inductively coupled plasma - optical emission spectrometer, CO pulse adsorption and Transmission electron microscopy. The catalytic dehydrogenation results indicated that the bimetallic Pd–Ni/Al2O3 showed best catalytic activity, followed by Pd/Al2O3, commercial Pd/Al2O3 and Ni/Al2O3. Notably, the catalytic activity of bimetallic was well maintained after 5 cycles at 200 °C with no degradation, indicating this bimetallic catalyst has potential prospect for large-scale application.  相似文献   

10.
For a hydrogen-based economy, safe and efficient hydrogen storage is essential. Compared to other chemical hydrogen storage technologies, such as ammonia or methanol, liquid organic hydrogen carrier (LOHC) systems allow for a reversible storage of hydrogen while being easy to handle in a diesel-like manner. In our contribution, we describe for the first time the successful utilization of the exhaust gas enthalpy of a porous media burner to directly supply the dehydrogenation heat for a kW-scale dehydrogenation of the hydrogen-rich LOHC compound perhydro dibenzyltoluene (H18-DBT). Our setup demonstrates the dynamics of the dehydrogenation unit at a realized maximum hydrogen power of 3.9 kWth, based on the lower heating value of the released hydrogen. For the intended applications with fluctuating hydrogen demand, e.g. a hydrogen refueling station (HRS) or stationary heating in buildings, a dynamic hydrogen supply from LOHC is important. Methane, e.g. from a biogas plant, is utilized in our scenario as a fuel source for the burner. Hydrogen is released within 30 min after cold start of the system. The dehydrogenation unit exhibits a power density relative to the reactor volume of about 0.5 kWtherm l−1 based on the lower heating value of the hydrogen and a catalyst productivity of up to 0.65 gH2 gPt−1 min−1 for hydrogen release from H18-DBT. An analysis of the by-products and reaction intermediates shows low by-product formation (e.g. maximum 0.6 wt.-% for high boilers and 0.9 wt.- % for low boilers) and uniform distribution of intermediates after the reaction. Thus, a relatively homogeneous temperature distribution and a uniform LOHC flow in the reaction zone can be assumed. Our findings illustrate the dynamics (heating rates of about 10 K min−1) and performance of direct heating of a release unit with a burner and represent a significant step towards LOHC-based hydrogen provisioning systems at technically relevant scales.  相似文献   

11.
Hydrogen storage in liquid organic hydrogen carriers (LOHC) such as the substance system dibenzyltoluene/perhydro-dibenzyltoluene (H0/H18-DBT) offers a promising alternative to conventional methods. In this contribution, we describe the successful demonstration of the dynamic combined operation of a continuously operated LOHC reactor and a PEM (polymer exchange membrane) fuel cell. The fuel cell was operated stable with fluctuating hydrogen release from dehydrogenation of H18-DBT over a total period of 4.5 h, reaching electrical stack powers of 6.6 kW. The contamination with hydrocarbons contained in the hydrogen after activated carbon filtering did not result in any detectable impairment or degradation of the fuel cell. The proposed pressure control algorithm based on a proportional integral (PI) controller proved to be a robust and easy-to-implement approach to enable the dynamic combined operation of LOHC dehydrogenation and PEM fuel cell.  相似文献   

12.
Energy storage via liquid organic hydrogen carrier (LOHC) systems has gained significant attention in recent times. A dibenzyltoluene (DBT) based LOHC offers excellent properties which largely solve today's hydrogen storage challenges. Understanding the course of the dehydrogenation reaction is important for catalyst and process optimization. Therefore, reliable and exact methods to determine the degree of hydrogenation (doh) are important. We here present other possible techniques, namely: comprehensive two-dimensional gas chromatography coupled with time of flight mass spectrometry (2D-GC-TOF-MS) and single quadrupole-mass spectrometry gas chromatogram system (GC-SQ-MS). The 2D-GC-TOF-MS results indicate that isomer fractions lose three molecules of hydrogen, as follows: H18-DBT, H12-DBT, H6-DBT and H0-DBT, and the doh decreases with an increase in dehydrogenation temperature. 1H NMR and GC-SQ-MS were employed as additional analytical techniques. The GC-SQ-MS was also used to analyse decomposition products that result from thermal cracking of reaction mixture molecules.  相似文献   

13.
The effect of metal oxide (CeO2, Al2O3 and ZrO2) support and In2O3 co-supported Pt catalysts has been investigated on steam reforming of methanol in microreactors. CeO2, Al2O3 and ZrO2 were prepared by the sol-gel method and they were used as a support, which was impregnated with In2O3 as co-support followed by the introduction of Pt species via the wet impregnation method. The size and dispersion of the Pt nanoparticles on In2O3/support have been examined by transmission electron microscopy. From these TEM and XPS results, it was found that the addition of In2O3 supports the formation of a high concentration of metallic Pt nanoparticles with enhanced dispersion and controlled particle size on the surface. The activity and stability of all the developed catalysts were tested for the steam reforming of methanol in microreactors at different temperatures. Under reforming conditions without prior reduction, a Pt/CeO2 catalyst containing 15 wt % of Pt exhibited complete methanol conversion and high selectivity towards hydrogen at 350 °C. However, the CO formation was found to be very high (7.0 vol %) for this catalyst. Upon addition of In2O3 as a co-support to this formulation the formation of CO decreased considerably. Pt/In2O3/CeO2 catalyst containing 15 wt % of Pt and 15 wt % of In2O3 showed excellent catalytic performance at much lower concentration of CO. This change could be closely associated with the formation of metallic Pt nanoparticles with smaller size, higher dispersion with strong interaction between Pt, In2O3 and support, which creates more oxygen vacancies to activate the water molecule which then react with methanol to produce H2 and CO2 suppressing the CO formation. Moreover, CeO2 supported Pt/In2O3 catalyst displayed higher stability with lowest CO formation under continuous steam reforming operation of 100 h. The superior performance of this catalyst is thought to be due to the relative abundance of redox sites on the CeO2 surface, which is able to create an oxygen vacancy as it possesses higher oxygen storage capacity and oxygen exchange capacity. This work demonstrates that the nature of support plays a crucial role for the continuous activation of reactants and determines the catalytic stability during methanol steam reforming.  相似文献   

14.
The investigation of dehydrogenation catalysts to achieve rapidly hydrogen release of Liquid Organic Hydrogen Carriers (LOHCs) are of crucial importance for large-scale applications. The catalyst supports with bulk surface area and decent acid-base nature is a key parameter for catalyst to improve its catalytic performance as well as reduce precious metal dosage. Herein, alumina was chosen as a support for Pd loading and prepared through hydrothermal route at different temperatures. The morphology and surface acid property of the alumina supports were investigated in detail. The results revealed that the hydrothermal temperature had a closely effect on the morphology, surface acidity and specific surface area of alumina, resulting in a further impact on Pd dispersion and particle size associated tightly with catalytic activity of Pd/Al2O3. The catalyst with 1 wt% Pd loaded on alumina carrier prepared via hydrothermal treatment at 120 °C showed the best catalytic performance for dehydrogenation of perhydro-N-propylcarbazole (12H-NPCZ). Full dehydrogenation with 100% conversion to N-propylcarbazole (NPCZ) could be achieved after 360 min at 180 °C and 101 kPa, which is higher than that of commercial 5 wt% Pd/Al2O3 catalyst. The catalyst has potential commercial application value in large-scale application of LOHC technology.  相似文献   

15.
Decline in catalyst performance due to coke deposition is the main problem in diesel steam (SR) and autothermal reforming (ATR) reactions. Good redox potential and strong interaction of CeO2 with nickel increase activity and coke resistivity of Ni/Al2O3 catalysts. In this study, mesoporous Al2O3, CeO2/Al2O3, and CeO2/ZrO2/Al2O3 supported nickel catalysts were successfully synthesized. The highest hydrogen yield, 97.7%, and almost no coke deposition were observed with CeO2/ZrO2/Al2O3 catalyst (Ni@8CeO2-2ZrO2-Al2O3-EISA) in SR reaction. The second highest hydrogen yield, 91.4%, was obtained with CeO2/Al2O3 catalyst (Ni@10CeO2-Al2O3-EISA) with 0.3 wt% coke deposition. Presence of ZrO2 prevented the transformation of cubic CeO2 into CeAlO3, which enhanced water gas shift reaction (WGSR) activity. Ni@10CeO2-Al2O3-EISA did not show any decline in activity in a long-term performance test. Higher CeO2 incorporation (20 wt%) caused lower steam reforming activity. Change of synthesis route from one-pot to impregnation for the CeO2 incorporation decreased the number of acid sites, limiting cracking reactions and causing a significant drop in hydrogen production.  相似文献   

16.
The aqueous-phase reforming (APR) of n-butanol (n-BuOH) over Ni(20 wt%) loaded Al2O3 and CeO2 catalysts has been studied in this paper. Over 100 h of run time, the Ni/Al2O3 catalyst showed significant deactivation compared to the Ni/CeO2 catalyst, both in terms of production rates and the selectivity to H2 and CO2. The Ni/CeO2 catalyst demonstrated higher selectivity for H2 and CO2, lower selectivity to alkanes, and a lower amount of C in the liquid phase compared to the Ni/Al2O3 sample. For the Ni/Al2O3 catalyst, the selectivity to CO increased with temperature, while the Ni/CeO2 catalyst produced no CO. For the Ni/CeO2 catalyst, the activation energies for H2 and CO2 production were 146 and 169 kJ mol−1, while for the Ni/Al2O3 catalyst these activation energies were 158 and 175 kJ mol−1, respectively. The difference of the active metal dispersion on Al2O3 and CeO2 supports, as measured from H2-pulse chemisorption was not significant. This indicates deposition of carbon on the catalyst as a likely cause of lower activity of the Ni/Al2O3 catalyst. It is unlikely that carbon would build up on the Ni/CeO2 catalyst due to higher oxygen mobility in the Ni doped non-stoichiometric CeO2 lattice. Based on the products formed, the proposed primary reaction pathway is the dehydrogenation of n-BuOH to butaldehyde followed by decarbonylation to propane. The propane then partially breaks down to hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through water gas shift. Ethane and methane are formed via Fischer-Tropsch reactions of CO/CO2 with H2.  相似文献   

17.
N-ethylcarbazole/dodecahydro-N-ethylcarbazole (NECZ/12H-NECZ) was a promising system for hydrogen storage applications. 1.0 wt% Pt/TiO2 was regarded as the optimal loading in Pt/TiO2 catalyst applied in the 12H-NECZ dehydrogenation reaction. The hydrogen release amount, selectivity to NECZ and TOF of 12H-NECZ dehydrogenation are 5.75 wt %, 98% and 229.73 min−1 at 453 K. Compared with the commercial 5.0 wt% Pd and Pt-based catalysts, it exhibited very high activity, selectivity and stability for 12H-NECZ dehydrogenation with low Pt loading. Combined with the XRD, XPS, HRTEM, TPR analysis, it was indicated that the enhanced catalytic performance was due to the SMSI (strong metal-supporting interaction) between Pt and TiO2 support, which accelerated the rate-limiting step and enhanced the whole dehydrogenation reaction. This work may be beneficial for the commercial application of Pt/TiO2 catalysts in the Liquid Organic Hydrogen Carrier (LOHC) system.  相似文献   

18.
In this paper the steam reforming of bioalcohols over Ni and Pt catalysts supported on bare Al2O3 and La2O3 and CeO2-modified Al2O3 to produce H2 was studied. Catalytic activity results showed that the glycerine and the intermediate liquid products may hinder the ethanol adsorption on metal active sites of the catalysts, especially at temperatures below 773 K. In fact, ethanol conversion was lower than glycerine conversion in the steam reforming reaction at low temperatures. H2 chemisorption revealed that La2O3 doping of the Ni/Al2O3 catalyst improved the metal dispersion providing a better behaviour to the Ni/Al2O3-O2 catalyst towards H2 production. In the case of Pt catalysts, the good reducibility and the H2 spillover effect provided to the Pt/Al2O3-O1 catalyst the capacity to produce higher H2 yields.  相似文献   

19.
Hydrogen storage and transport via Liquid Organic Hydrogen Carriers (LOHC) is gaining increasing attention. In this study, we present catalytically activated stainless steel plates as a promising alternative to the commonly used pellet catalysts for the dehydrogenation of perhydro dibenzyltoluene (H18-DBT). These plate catalysts promise better heat transport to the active sites. For improved performance, we modified our Pt/alumina plate catalysts by using i) platinum sulfite impregnation and ii) post-treatment with (NH4)2SO4. Post-treatment with (NH4)2SO4 resulted in a less active catalyst with lower formation of high-boiling side products compared to the S-free plate catalyst. Catalysts prepared with platinum sulfite showed both >35% higher activities and 90% reduction in high-boiler formation compared to the S-free plate catalysts. Our findings pave the way for the development of catalytically activated heat transfer plates that would allow the incorporation of LOHC dehydrogenation units into the geometry of future high temperature fuel cell stacks.  相似文献   

20.
The influence of the support of Pt catalysts for the reaction of steam reforming of ethanol at low temperatures has been investigated on Al2O3, ZrO2 and CeO2. It was found that the conversion of ethanol is significantly higher when Pt is dispersed on Al2O3 or ZrO2, compared to CeO2. Selectivity toward H2 is higher over ZrO2-supported catalyst, which is also able to decrease CO production via the water-gas shift reaction. Depending on catalyst employed, interaction of the reaction mixture with the catalyst surface results in the development of a variety of bands attributed to ethoxy, acetate and formate/carbonate species associated with the support, as well as by bands attributed to carbonyl species adsorbed on platinum sites. The oxidation state of Pt seems to affect catalytic activity, which was found to decrease with increasing the population of adsorbed CO species on partially oxidized (Ptδ+) sites. Evidence is provided that the main reaction pathway ethanol dehydrogenation, through the formation of surface ethoxy species and subsequently acetaldehyde, which is decomposed toward methane, hydrogen and carbon oxides. The population of adsorbed surface species, as well as product distribution in the gas phase varies significantly depending on catalyst reactivity towards the WGS reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号