首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Expediting electrons-holes separation and surface reaction kinetics is deemed to be pivotal factor to determine the photocatalytic performance. Decoration of reductive and oxidative cocatalysts on semiconductors is a resultful approach for motivating electrons-holes separation and surface reaction kinetics. In this work, a ternary 2.4%-(CoSe2@NiS-1)/CdS photocatalyst was developed. Among this compound, reductive cocatalyst CoSe2 not only acted as electron trapping center by extracting photogenerated electrons, but also constructed Schottky junction with CdS to accelerate migration of photogenerated carriers and inhibit the backflow. Meanwhile, oxidative cocatalyst NiS forming p-n type heterojunction with CdS served as hole-trap center to boost transport and consumption of photoinduced holes. Integrating of dual cocatalysts and heterojunctions played synergistic effect in promoting the photocatalytic performance and photo-corrosion stability. 2.4%-(CoSe2@NiS-1)/CdS achieved H2 evolution of 1413.9 μmol and maintained at 85.47% after six cycles. It's expected that this work can provide an insight into designing high active solar energy conversion system.  相似文献   

2.
The design of p-n heterojunction photocatalysts to overcome the drawbacks of low photocatalytic activity that results from the recombination of charge carriers and narrow photo-response range is promising technique for future energy. Here, we demonstrate the facile hydrothermal synthesis for the preparation of Bi2O3/MoS2 p-n heterojunction photocatalysts with tunable loading amount of Bi2O3 (0–15 wt%). The structure, surface morphology, composition and optical properties of heterostructures were studied using X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), UV–visible absorption spectroscopy, Brunauer-Emmett-Teller (BET) surface area, photoluminescence (PL), electrochemical impedance spectroscopy (EIS). Compare to pure Bi2O3 and MoS2, the Bi2O3/MoS2 heterostructures displayed significantly superior performance for photocatalytic hydrogen (H2) production using visible photo-irradiation. The maximum performance for hydrogen evolution was achieved over Bi2O3/MoS2 photocatalyst (10 μmol h−1g−1) with Bi2O3 content of 11 wt%, which was approximately ten times higher than pure Bi2O3 (1.1 μmol h−1g−1) and MoS2 (1.2 μmol h−1g−1) photocatalyst. The superior performance was attributed to the robust light harvesting ability, enhanced charge carrier separation via gradual charge transferred pathway. Moreover, the increased efficiency of Bi2O3/MoS2 heterostructure photocatalyst is discussed through proposed mechanism based on observed performance, band gap and band position calculations, PL and EIS data.  相似文献   

3.
Constructing 2D/2D heterojunction photocatalysts has attracted great attentions due to their inherent advantages such as larger interfacial contact areas, short transfer distance of charges and abundant reaction active sites. Herein, 2D/2D CoP/CdS heterojunctions were successfully fabricated and employed in photocatalytic H2 evolution using lactic acid as sacrificial reagents. The multiple characteristic techniques were adopted to investigate the crystalline phases, morphologies, optical properties and textual structures of heterojunctions. It was found that integrating 2D CoP nanosheets as cocatalysts with 2D CdS nanosheets by Co–S chemical bonds would significantly boost the photocatalytic H2 evolution performances, and the 7 wt% 2D/2D CoP/CdS heterojunction possessed the maximal H2 evolution rate of 92.54 mmol g?1 h?1, approximately 31 times higher than that of bare 2D CdS nanosheets. Photoelectrochemical, steady photoluminescence (PL) and time-resolved photoluminescence (TRPL) measurements indicated that there existed an effective charge separation and migration over 2D/2D CoP/CdS heterojunction, which then markedly lengthened the photoinduced electrons average lifetimes, retarded the recombination of charge carriers, and caused the dramatically boosted photocatalytic H2 evolution activity. Moreover, the density functional theory (DFT) calculation further corroborated that the efficient charge transfer occurred at the interfaces of CoP/CdS heterojunction. This present research puts forward a promising strategy to engineer the 2D/2D heterojunction photocatalysts endowed with an appealing photocatalytic H2 evolution performance.  相似文献   

4.
The annealed Ti3C2Tx MXenes retained original layered morphology and gave rise to the formation of TiO2 is anticipated to achieve improved photocatalytic hydrogen evolution performance as a noble-metal-free co-catalyst. In this work, a novel Ti3C2/TiO2/UiO-66-NH2 hybrid was rationally designed for the first time by simply introducing annealed Ti3C2Tx MXenes over water-stable Zr-MOFs (UiO-66-NH2) precursors via a facile hydrothermal process. As expected, the rationally designed Ti3C2/TiO2/UiO-66-NH2 displayed significantly improvement in photocatalytic H2 performance (1980 μmol·h1·g1) than pristine UiO-66-NH2 under simulated sunlight irradiation. The excellent photocatalytic HER activity can be attributed to the formation of multi-interfaces in Ti3C2/TiO2/UiO-66-NH2, including Ti3C2/TiO2/UiO-66-NH2, Ti3C2/TiO2 and Ti3C2/UiO-66-NH2 interfaces, which constructed multiple pathways at the interfaces with Schottky junctions to accelerate the separation and transfer of charge carriers and endowed the accumulation of photo-generated electrons on the surface of Ti3C2. This work expanded the possibility of porous MOFs for the development of efficient photocatalytic water splitting using annealed MXenes.  相似文献   

5.
Efficient charge separation is crucial for solar energy conversion in semiconductor-based systems. Creating p-n junction is an effective strategy to enhance charge separation because the built-in electric field could inhibit charge recombination. However, in many situations, the high reaction barrier will limit the surface reaction rate, resulting in poor carrier utilization of the p-n junction. Here, with carefully designed cocatalyst loading, we successfully overcome the limitation and obtain the full effectiveness of the p-n junction. When used for photocatalytic water splitting, the well-designed catalyst exhibits excellent photocatalytic activity, with a hydrogen evolution rate as high as 13.2 mmol h?1 g?1, which is 18 times higher than that of the pristine p-n junction. Further investigation reveals that the enhancement should be attributed to the synergistic effect between cocatalyst and p-n junction, with the cocatalyst improves reaction rate on the surface and the p-n junction accelerates charge separation in the bulk simultaneously. This work provides an effective strategy to modify the surface properties of p-n junction through cocatalysts-loading for efficient photocatalytic hydrogen evolution.  相似文献   

6.
In terms of improving photocatalytic hydrogen production performance, inexpensive and earth-rich cocatalysts have become promising alternatives to precious metals. Herein, a novel CoNi–TiO2 photocatalyst composed of TiO2 nanoflowers and CoNi alloy was prepared by hydrothermal and chemical reduction methods. Various characterizations and test results have confirmed that the further improvement of the photocatalytic performance of the CoNi–TiO2 photocatalyst is mainly due to the fact that the bimetallic CoNi alloy can accelerate charge transfer and inhibit the recombination of photo-induced carriers. The hydrogen production rate of the prepared CoNi–TiO2 is about 24 times higher than that of the pristine TiO2, and its hydrogen production rate value can reach 6580.9 μmol g?1 h?1, and showing comparable photocatalytic performance to 0.5 wt% Pt–TiO2. In addition, combined with the characterization results, a probable mechanism for enhanced photocatalytic performance was proposed. This study provides favorable enlightenment for the design of a series of highly efficient non-precious metal TiO2-based photocatalysts.  相似文献   

7.
Scalable and sustainable photocatalytic hydrogen evolution via water splitting requires highly active, stable and earth-abundant cocatalysts to replace rare and expensive metal Platinum. Herein, two facile and similar thermal injection methods are employed to synthesize 3D NiTe2 microsphere and 0D/3D Ni/NiTe2 Schottky heterojunction photocatalyst. The optimized 6% Ni/NiTe2 composite shows good H2 evolution activity with a rate of 2214.2 μmol g−1·h−1- about 1.55 times higher than that of single NiTe2. Especially, it is the first time to report that NiTe2 and Ni/NiTe2 composite have the activity of producing H2O2 through the two-electron reduction of O2 during photocatalytic water splitting. This enhanced photocatalytic performance can be attributed to the rapid separation and migration of photogenerated charge carriers, low interfacial resistance, abundant surface active sites and two-electron reduction reaction process. This work provides an innovative approach for designing and constructing the potential metal-semiconductor composites with unique electronic structures.  相似文献   

8.
In this work, C@ZnxCd1-xS/Co3O4 catalyst which with high hydrogen production activity was prepared and the catalyst was characterized by SEM, TEM, XRD, XPS, Uv–vis DRS characterization. After two-step modification, the light absorption intensity of C@ZnxCd1-xS and C@ZnxCd1-xS/Co3O4 showed an increasing trend compared with pure ZnxCd1-xS, such phenomenon was beneficial to the visible light absorption and utilization of photocatalyst. In addition, Mott-Schottky proved that ZnxCd1-xS catalyst formed p-n heterojunction with Co3O4 nanoparticles, which further demonstrated that the modification of ZnxCd1-xS by Co3O4 was successful. And the hydrogen production of C@ZnxCd1-xS/Co3O4 (30%) (1405.1 μmol) was 6.9 times that of pure ZnxCd1-xS. The improvement of photocatalytic performance can be attributed to that carbon particles accelerate the storage and transfer of electrons, and the formation of p-n heterojunction between Co3O4 and ZnxCd1-xS promotes the separation of photogenerated carriers effectively. In this study, the introduction of amorphous carbon and Co3O4 promoted the transfer and separation of electrons and holes greatly, thereby inhibited the recombination of carriers and provided the favorable conditions for the preparation of highly efficient and stable photocatalysts.  相似文献   

9.
Designing cost-effective photocatalysts with remarkable performance is a foresighted strategy to foster the evolution of H2 in water splitting. In this study, a p-n heterojunction FeWO4/Mn0.5Cd0.5S photocatalyst modified by low-cost and non-toxic FeWO4 was synthesized using hydrothermal and calcination methods. The hydrogen evolution activity of Mn0.5Cd0.5S was strengthened by varying the amount of FeWO4 loading. The hydrogen production rate of FeWO4/Mn0.5Cd0.5S photocatalyst loaded with 10% FeWO4 can reach 9.63 mmol g?1 h?1, which is equivalent to 2.16 times of pure Mn0.5Cd0.5S. The enhancement of the H2 evolution activity was primarily contributed to a p-n heterojunction formed at the interface of FeWO4 and Mn0.5Cd0.5S. It provides a fast pathway for the migration and separation of photogenerated charges and effectively inhibits the photo-corrosion of Mn0.5Cd0.5S.  相似文献   

10.
In this work, amorphous cobalt sulfide with a sulfur-rich structure (sr-CoSx) is developed as the cocatalyst for photocatalytic hydrogen evolution. Through a facile hydrothermal reaction, sr-CoSx nanodots are in situ grown on TiO2 to obtain a heterojunction photocatalyst (sr-CoSx/TiO2). The as-prepared photocatalyst exhibits remarkable improved hydrogen evolution performance compared with TiO2. Under the irradiation of xenon lamp, the hydrogen evolution rate of sr-CoSx/TiO2 can reach 507 μmol h?1 g?1, which is about 121 times that of pristine TiO2, indicating that sr-CoSx is a highly efficient cocatalyst to promote hydrogen evolution on TiO2. Moreover, sr-CoSx/TiO2 exhibits better performance than crystalline CoS2 or amorphous CoS modified TiO2, suggesting the important role of sulfur-rich structure and amorphous state in promoting the cocatalytic effect. Electrochemical and photoluminescence measurements show the most efficient carrier separation between sr-CoSx and TiO2, which also contributes to its high photocatalytic hydrogen evolution performance.  相似文献   

11.
Prompt recombination of photo-generated charges in semiconducting material strictly restrict photocatalytic process efficiency. Herein, coupling of CuxP nanoparticles and PbTiO3 nanoplates through inert atmosphere calcination process for outstanding H2 production has been reported. Uniform edging distribution of CuxP nanoparticles over PbTiO3 nanoplates; witnessed from TEM analysis revealed an intimate material contact for charge transportation to the active reaction sites of catalyst surface. Besides, junction interface between CuxP and PbTiO3 component; confirmed from XPS and Mott-Schottky analysis yield an amplified photo/electro-chemical and catalytic performance. A stronger photocurrent density via., H2O2 electron scavenger and larger photovoltage in junction material compared with PbTiO3 counterpart; follows higher surface charge transfer efficiency and slower potential decay with longer charge carriers lifetime simultaneously. The PbTiO3 nanoplates with an optimum amount of CuxP have achieved maximum H2 production attaining conversion efficiency of 9.72%. Consequently, a type-II energy band alignment mechanism has been proposed for enhanced H2 production.  相似文献   

12.
Seeking an efficient and non-precious co-catalyst for g-C3N4 (CN) remains a great demanding to achieve high photocatalytic hydrogen generation performance. Herein, a composite photocatalyst with high efficiency was prepared by modifying CN with coral-like NiSe2. The optimal hydrogen evolution rate of 643.16 μmol g?1 h?1 is from NiSe2/CN-5 under visible light. Superior light absorption and interfacial charge transfer properties including suppressed photogenerated carrier recombination and efficient separation of photogenerated electron-hole pairs have been observed, which account for the enhanced photocatalytic performance of CN.  相似文献   

13.
It is still challenging to design effective g-C3N4 photocatalysts with high separation efficiency of photo-generated charges and strong visible light absorption. Herein, a simple, template-free and “bottom-up” strategy has been developed to prepare 1D/2D g-C3N4 isotype heterojunction composed of carbon-doped nanowires and ultra-thin nanosheets. The ethanediamine (EE) grafted on melamine ensures the growth of 1D g-C3N4 nanowires with high carbon doping, and the ultra-thin g-C3N4 nanosheets were produced through HCl-assisted hydrothermal strategy. The apparent grain boundary between 2D nanosheets and 1D carbon-doped nanowires manifested the formation of the isotype heterojunction. The built-in electric field provide strong driving force for photogenerated carriers separation. Meanwhile, the doping carbon in g-C3N4 nanowires promotes visible light absorption. As a result, the photocatalytic H2 evolution activity of 1D/2D g-C3N4 isotype heterojunction is 8.2 time that of the pristine g-C3N4, and an excellent stability is also obtained. This work provides a promising strategy to construct isotype heterojunction with different morphologies for effective photocatalytic H2 evolution.  相似文献   

14.
The film-based gas sensor owning high compatibility with semiconductor device fabrication, plays an important role in the miniaturization and integration of the devices. Here, simple metal organic decomposition method and calcining procedure were used to prepare dense WO3 thin film with PdO nanoparticles being homogeneously dispersed. After painting the silver paste on its surface as electrodes, the H2 gas sensor was fabricated. At the optimal operating temperature of 160 °C, with response values (Ra/Rg) of 1.2 & 45.1 and response time of 38 s & 4 s, towards 500 ppb and 100 ppm H2, respectively, the sensor presents high sensitivity and low detection limit together. It is rare to report the H2 gas sensor based on dense semiconductor film with such low detection limit. Towards 500 ppb and 100 ppm H2, it still shows the same response values more than half a year later, which proves its stability. A good linear behaviour between the response and relative humidity is observed too. The chief cause of the better performance of the sensor may be the homogeneous and optimal distribution of the p-type PdO nanoparticles in n-type WO3 film, which is the character of this structure. In addition, the repeatability of the preparing process is very well too. All the better performances suggest that the H2 sensor based on this structure has a huge potential in practical application.  相似文献   

15.
The shortage of fossil energy has become a growing global concern. It is particularly important to make full use of the infinite solar energy resources, and transform them into sustainable and clean energy. The development of hydrogen energy has become a feasible solution to solve the energy shortage problem. The preparation of photocatalysts featuring efficient charge transfer channels and high hydrogen production activity provides a pathway for the development of hydrogen energy. In this paper, we report for the first time the direct assembly of 2D ZnIn2S4 (ZIS) nanosheets on the surface of CoTiO3 (CTO). The synthesized CoTiO3/ZnIn2S4 (CTO/ZIS) photocatalyst features a direct Z-scheme charge transfer channel, which enhances the separation rate of photogenerated carriers, and accelerates the photocatalytic H2 evolution (PHE) rate. Without the assistance of any co-catalyst, the PHE rate of prepared CoTiO3/ZnIn2S4 was as high as 5.21 mmol g?1 h?1. Moreover, the H2 evolution rate of CoTiO3/ZnIn2S4 almost did not decrease significantly after four consecutive 4 h cycles. This investigation provides a valuable approach for the exploitation of novel and efficient Z-scheme photocatalysts in the application of solar energy to hydrogen energy conversion.  相似文献   

16.
In this work, p-type semiconductor CoWO4 nanoparticles was successfully anchored on the surface of n-type Mn0.2Cd0.8S nanorods, and p-n type heterostructure photocatalysts with low cost and high efficiency were synthesized. By optimizing the loading of CoWO4 nanoparticles, the hydrogen evolution rate of the compound can reach a maximum, the peak is 408 μmol/5 h. Under visible light irradiation, it is equivalent to 3.61 times pure Mn0.2Cd0.8S. In addition, the composite catalyst has favorable durability and structural stability. In terms of morphology, the combination of nanorods (SBET = 24 m2g-1) and nanoparticles (SBET = 12 m2g-1) increased the specific surface area of the composite catalyst (SBET = 31 m2g-1), thus the composite exposed more active sites. In terms of heterojunction, the conduction bands of two semiconductors were determined by UV–vis diffuse reflection and Mott-Schottky, and the construction of p-n heterojunction was verified. The results of photochemical experiment further indicate that the built-in electric field in the p-n type heterostructure not only accelerates the electron-hole pair transfer, but vastly enhances the carrier average lifetime. In this paper, the morphology of the photocatalyst was modified and p-n heterojunction was constructed. The result is that the performance of Mn0.2Cd0.8S MCS was improved and the possible mechanism of photocatalytic hydrogen evolution was proposed.  相似文献   

17.
The exploration of efficient alkaline hydrogen evolution photocatalysts is very meaningful in overall water splitting due to the fact that the high O2 evolution performance is usually obtained under alkaline conditions. Herein, we successfully prepared a kind of photocatalysts with excellent H2 production activity in an alkaline environment by combining Lindqvist-type polyoxoniobate K7HNb6O19 with Co3O4. The hydrogen production performance of the optimal sample could reach 5394.17 μmol g?1 under highly alkaline conditions. The superior H2 evolution activity is mainly endowed by p-n heterojunction creating an internal-built electric field on the interface of the two semiconductors, which realizes the effective spatial separation of electron-hole pairs. Simultaneously, the increased oxygen vacancies and lamellar structure of catalysts also respectively endow samples with a high H2O adsorption capacity and efficient photoinduced carrier separation rate. The work will be instructive for designing high-efficiency and stable HER catalyst in alkaline conditions for practical applications.  相似文献   

18.
The exploitation of noble-metal-free photocatalysts with high solar-to-H2 conversion efficiency is a hot topic in the photocatalysis field. Molybdenum sulfide materials, which have good physicochemical properties and excellent hydrogen evolution activity, have become an effective noble metal cocatalyst substitute and attracted widespread attention. In this work, a highly efficient photocatalyst constructed by decorating thiomolybdate [Mo2S12]2- nanoclusters on TiO2 is reported for the first time. The resultant [Mo2S12]2-/TiO2 photocatalyst shows a remarkable enhanced hydrogen evolution rate under the Xenon light irradiation. At the optimal loading amount of [Mo2S12]2-, the photocatalyst exhibits a photocatalytic hydrogen evolution rate of 213.1 μmol h?1 g?1, which is about 51 times that of the pure TiO2. Characterization results show that the intimate contact between [Mo2S12]2- and TiO2 promotes the separation of hole-electron pairs, prolongs the lifetime of carriers, and thereby increases the photocatalytic activity. Furthermore, abundant bridging S in the [Mo2S12]2- acts as active sites for hydrogen evolution, which also contributes to the enhanced hydrogen production rate. This work demonstrates an efficient way for the construction of noble-metal-free hydrogen evolution photocatalyst and provides a useful reference for the development of low cost photocatalysts in the future.  相似文献   

19.
Developing low-cost, highly efficient and robust photocatalystic hydrogen evolution system is a promising solution to environmental and energy crisis. Herein, a Z-scheme Cu3P/ZnIn2S4 heterojunction photocatalyst was successfully constructed for the first time via a facile solution-phase hybridization method. The optimized Cu3P/ZIS composite exhibited the highest H2 production rate of 2561.1 μmol g−1 h−1 under visible light irradiation (>420 nm), which was 5.2 times greater than that of bare ZnIn2S4 and even exceeded the photocatalytic performance of Pt/ZIS composite. The apparent quantum yield of 10 wt% Cu3P/ZnIn2S4 can reach 22.3% at 420 nm. The huge boost of photocatalytic hydrogen evolution activity is ascribed to the formation of heterojunction with the built in electric field within Cu3P/ZnIn2S4 and Z-scheme charge carriers transfer pathway, which result in efficient separation and migration of charge carriers. In addition, both experimental and theoretical calculation confirmed that the charge-carriers transfer pathway of Cu3P/ZnIn2S4 photocatalyst follows the Z-scheme mechanism instead of conventional type-Ⅱ heterojunction mechanism. This work is considered helpful for getting a great deal of insight into constructing high-activity and cost-effective transition metal phosphides (TMPs) based photcatalytic hydrogen production system and rationally designing Z-scheme heterojunction photocatalyst.  相似文献   

20.
In this study, GO and Fe2P were used as co-catalysts to improve the separation efficiency of photogenerated electron-hole pairs in an In2S3 photocatalyst. The metallic character of Fe2P provided a cheap substitute for traditional noble metal co-catalyst for H2 production in aqueous media. The GO/Fe2P/In2S3 composite demonstrated significantly enhanced photocatalytic activity compared to pure In2S3, delivering a H2 production rate of 483.35 μmol h?1 g?1 and a quantum yield was 22.68% under visible light irradiation. The design of the photocatalyst was optimized using “Design Expert” software. The analysis showed that a GO loading of 1.18 wt%, a Fe loading of 5.36 wt%, and a calcination temperature of 180 °C were optimal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号