首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A two-step thermochemical cycle process for solar hydrogen production from water has been developed using ferrite-based redox systems at moderate temperatures. The cycle offers promising properties concerning thermodynamics and efficiency and produces pure hydrogen without need for product separation.  相似文献   

2.
3.
4.
Hydrogen as a clean energy carrier is frequently identified as a major solution to the environmental problem of greenhouse gases, resulting from worldwide dependence on fossil fuels. However, most of the world's hydrogen (about 96%) is currently produced from fossil fuels, which does not address the issue of greenhouse gases. Although there is a large motivation of the “hydrogen economy”, for improvement of urban air quality, energy security, and integration of intermittent renewable energy sources, CO2 free energy sources are critical to hydrogen becoming a significant energy carrier. Two technologies, applied in tandem, have a promising potential to generate hydrogen without leading to greenhouse gas emissions: 1) electrolysis and 2) thermochemical decomposition of water. This paper will investigate their unique complementary roles to reduce costs of hydrogen production. Together they have a unique potential to serve both de-centralized hydrogen needs in periods of low-demand electricity, and centralized base-load production from a nuclear station. Thermochemical methods have a significantly higher thermal efficiency, but electrolysis can take advantage of low electricity prices during off-peak hours, as well as intermittent and de-centralized supplies like wind, solar or tidal power. By effectively linking these systems, water-based production of hydrogen can become more competitive against the predominant existing technology, SMR (steam-methane reforming).  相似文献   

5.
Solar Hydrogen is one of the potential key technologies to fuel human's progress. Optimizing the utilization of sunlight to produce Hydrogen using a hybrid thermo-electrolysis system is useful to promote such technology to broad deployment. Theoretically, it was found that a proper sunlight utilization management by an optimized spectral splitting of the solar spectrum between heating water to produce steam on the one hand and producing electricity via photovoltaic cell to energize the steam electrolysis on the other hand leads to an efficient sunlight to Hydrogen conversion. We report in this theoretical work that 82% sunlight to Hydrogen conversion efficiency can be accomplished from the proposed optimized hybrid thermo-photovoltaic system that employs a 90% efficient solar-thermal convertor. Additionally, it was found that for the proposed optimized hybrid system a quadratic enhancement for both the photovoltaic conversion efficiency and the net solar to hydrogen conversion efficiency can be obtained from employing more efficient solar to thermal convertor. Unlike the previous works, which have handled the optimal photon management in the hybrid thermo-photovoltaic system, our proposed optimization method accounts thoroughly the major losses in the photovoltaic conversion like the thermalization process and the limiting fill factor of the PV cell. Therefore, the methodology and the results of this work are more realistic and could be a useful recipe for an optimal sunlight spectrum management for an effective solar-hydrogen production, which could thrive as a reliable carbon-free-source of energy.  相似文献   

6.
This study evaluates a two-step thermochemical water-splitting method for green hydrogen production and considers the economic feasibility of technically available designs under harsh hydrogen production conditions. As layouts of hydrogen production, two thermochemical water–splitting systems are evaluated in this study. One system is the process via high temperature from solar concentration power systems. The other system uses microwaves for thermochemical water splitting under low temperatures from advanced nuclear power plants. As part of the hydrogen production system, possible solid–solid and fluid–fluid heat recuperators of printed circuit heat exchanger (PCHE) are proposed and evaluated through the effectiveness-number of transfer units (ε-NTU) method and logarithmic mean temperature difference (LMTD) method. The required heat transfer area and volume are calculated according to the operating conditions and considered in the economic assessment of the hydrogen production system. Optimum geometries of the PCHE are proposed considering the cost analysis. The Levelized cost of hydrogen (LCOH) and system efficiency are calculated for the conventional system with solar power and system-using microwave with HTGR. The importance of heat recuperation systems is confirmed in that they account for approximately 10–20% of the cost for both system layouts. To evaluate the technology development level to achieve the ultimate target, LCOH according to various cost factors is evaluated and further research areas essential for commercialization are represented.  相似文献   

7.
In this paper, a theoretical and experimental study on a novel cobalt-chlorine thermochemical cycle for hydrogen production is presented. The cobalt-chlorine cycle comprises a closed loop of four thermochemical reactions occurring at 700 °C that is a reaction temperature compatible with the present generation of high-temperature gas-cooled reactors. Firstly, a thermodynamic analysis was done for determining whether this cycle is attractive for hydrogen production in terms of both energy and exergy efficiencies. Following, proof-of-principle experiments were carried out at laboratory scale in a batch reactor at temperatures in the range from 550 °C to 950 °C and holding times between 1 h and 72 h. Experimental results complemented by the characterization of condensed compounds deposited on the reactor walls allowed confirm the reaction pathway of thermochemical reactions originally proposed, define the slowest step of the global process, and explain the beneficial effect of increasing the system pressure on the hydrogen yield. Even both performance assessment and proof-of-principle experimental results look like promising more research will be required in the future to confirm these preliminary findings. Finally, a modified version of the cobalt-chlorine cycle is proposed for enhancing the global kinetics, based on the experimental evidence found in the proof-of-principle tests.  相似文献   

8.
This study deals with solar hydrogen production from the two-step iron oxide thermochemical cycle (Fe3O4/FeO). This cycle involves the endothermic solar-driven reduction of the metal oxide (magnetite) at high temperature followed by the exothermic steam hydrolysis of the reduced metal oxide (wustite) for hydrogen generation. Thermodynamic and experimental investigations have been performed to quantify the performances of this cycle for hydrogen production. High-temperature decomposition reaction (metal oxide reduction) was performed in a solar reactor set at the focus of a laboratory-scale solar furnace. The operating conditions for obtaining the complete reduction of magnetite into wustite were defined. An inert atmosphere is required to prevent re-oxidation of Fe(II) oxide during quenching. The water-splitting reaction with iron(II) oxide producing hydrogen was studied to determine the chemical kinetics, and the influence of temperature and particles size on the chemical conversion. A conversion of 83% was obtained for the hydrolysis reaction of non-stoichiometric solar wustite Fe(1−y)O at 575 °C.  相似文献   

9.
The distinguish generation methods regarding hydrogen generation using solar energy as a triggering agent are discussed in this paper, specifically indirect techniques. Two broadly classified processes are direct and indirect. The Direct processes exhibit high thermal efficiency, but their low conversion efficiency, maximum heat dissipation, and the lack of readily available heat resistive materials in abundance put the indirect processes relatively on the higher rank. The indirect methods include bio photolysis, thermochemical, photolysis, and electrolysis. There are promising features of indirect ways. Bio-photolysis provides zero pollution; the photolysis method reduces the carbon footprint in the environment; Thermochemical is meritorious in low electricity consumption due to high heat generation in the process; Electrolysis proves its worth in negligible pollution and considerable efficiency. The energy and exergy efficiency for hydrogen yielding are compared, and it is found that electrolysis has the highest energy and exergy efficiency. In terms of raw material availability, thermochemical ranks very low as compared to photolysis (abundant solar energy), bio-photolysis (a readily available bio-agent), and electrolysis (electrolytic agents to carry out the process).  相似文献   

10.
The Philippines is exploring different alternative sources of energy to make the country less dependent on imported fossil fuels and to reduce significantly the country's CO2 emissions. Given the abundance of renewable energy potential in the country, green hydrogen from renewables is a promising fuel because it can be utilized as an energy carrier and can provide a source of clean and sustainable energy with no emissions. This paper aims to review the prospects and challenges for the potential use of green hydrogen in several production and utilization pathways in the Philippines. The study identified green hydrogen production routes from available renewable energy sources in the country, including geothermal, hydropower, wind, solar, biomass, and ocean. Opportunities for several utilization pathways include transportation, industry, utility, and energy storage. From the analysis, this study proposes a roadmap for a green hydrogen economy in the country by 2050, divided into three phases: I–green hydrogen as industrial feedstock, II–green hydrogen as fuel cell technology, and III–commercialization of green hydrogen. On the other hand, the analysis identified several challenges, including technical, economic, and social aspects, as well as the corresponding policy implications for the realization of a green hydrogen economy that can be applied in the Philippines and other developing countries.  相似文献   

11.
Redox-pair-based thermochemical cycles are considered as a very promising option for the production of hydrogen via renewable energy sources like concentrated solar energy and raw materials like water. This work concerns the synthesis of various spinel materials of the iron and aluminum families via combustion reactions in the solid and in the liquid-phase and the testing of their suitability as redox-pair materials for hydrogen production by water splitting via thermochemical cycles. The effects of reactants' stoichiometry (fuel/oxidizer) on the combustion synthesis reaction characteristics and on the products' phase composition and properties were studied. By fine-tuning the synthesis parameters, a wide variety of single-phase, pure and well crystallized spinels could be controllably synthesized. Post-synthesis, high-temperature calcination studies under air and nitrogen at the temperature levels encountered during solar-aided thermochemical cyclic operation have eliminated several material families due to phase composition instabilities and identified among the various compositions synthesized NiFe2O4 and CoFe2O4 as the two most suitable for cyclic water splitting – thermal reduction operation. First such thermochemical cyclic tests between 800 and 1400 °C with NiFe2O4 and CoFe2O4 in powder form in a fixed bed laboratory reactor have demonstrated capability for cyclic operation and alternate hydrogen/oxygen production at the respective cycle steps for both materials. Under the particular testing conditions the two materials exhibited hydrogen/oxygen yields of the same magnitude and similar temperatures of oxygen release during thermal reduction.  相似文献   

12.
13.
In this work, we report on the evaluation of the activity of commercially available ferrites with different compositions, NiFe2O4, Ni0.5Zn0.5Fe2O4, ZnFe2O4, Cu0.5Zn0.5Fe2O4 and CuFe2O4, for hydrogen production by two-step thermochemical cycles, as a preliminary study for solar energy driven water splitting processes. The samples were acquired from Sigma–Aldrich, and are mainly composed of a spinel crystalline phase. The net hydrogen production after the first reduction–oxidation cycle decreases in the order NiFe2O4 > Ni0.5Zn0.5Fe2O4 > ZnFe2O4 > Cu0.5Zn0.5Fe2O4 > CuFe2O4, and so does the H2/O2 molar ratio, which is regarded as an indicator of potential cyclability. Considering these results, the nickel ferrite has been selected for longer term studies of thermochemical cycles. The results of four cycles with this ferrite show that the H2/O2 molar ratio of every two steps increases with the number of cycles, being the total amount stoichiometric regarding the water splitting reaction. The possible use of this nickel ferrite as a standard material for the comparison of results is proposed.  相似文献   

14.
Hydrogen is acclaimed to be an energy carrier of the future. Currently, it is mainly produced by fossil fuels, which release climate-changing emissions. Thermochemical cycles, represented here by the hybrid-sulfur cycle and a metal oxide based cycle, along with electrolysis of water are the most promising processes for ‘clean’ hydrogen mass production for the future. For this comparison study, both thermochemical cycles are operated by concentrated solar thermal power for multistage water splitting. The electricity required for the electrolysis is produced by a parabolic trough power plant. For each process investment, operating and hydrogen production costs were calculated on a 50 MWth scale. The goal is to point out the potential of sustainable hydrogen production using solar energy and thermochemical cycles compared to commercial electrolysis. A sensitivity analysis was carried out for three different cost scenarios. As a result, hydrogen production costs ranging from 3.9–5.6 €/kg for the hybrid-sulfur cycle, 3.5–12.8 €/kg for the metal oxide based cycle and 2.1–6.8 €/kg for electrolysis were obtained.  相似文献   

15.
A calcium oxide/steam chemical heat pump (CHP) is presented in the study as a means to upgrade waste heat from industrial processes for thermochemical hydrogen production. The CHP is used to upgrade waste heat for the decomposition of copper oxychloride (CuO.CuCl2) in a copper–chlorine (Cu–Cl) thermochemical cycle. A formulation is presented for high temperature steam electrolysis and thermochemical splitting of water using waste heat of a cement plant. Numerical models are presented for verifying the availability of energy for potential waste heat upgrading in cement plants. The optimal hydration and decomposition temperatures for the calcium oxide/steam reversible reaction of 485 K and 565 K respectively are obtained for the combined heat pump and thermochemical cycle. The coefficient of performance and overall efficiency of 4.6 and 47.8% respectively are presented and discussed for the CHP and hydrogen production from the cement plant.  相似文献   

16.
The present study is related with the thermodynamic performance assessment of renewable hydrogen production through Boron thermochemical water splitting cycle. Therefore, all step efficiencies and overall cycle efficiency are calculated based on complete reaction. Additionally, a parametric study is conducted to determine the effect of the reference environment temperature on the overall cycle efficiency. In this regard, exergy efficiencies, exergy destruction rates and also inlet and outlet exergy rates of the cycle are calculated and presented for various reference temperatures. The exergy efficiency of the cycle is calculated as 0.4393 based on complete reaction and occurs at 298 K. This study has shown that Boron thermochemical water splitting cycle has a great potential due to cycle performance. As a result, Boron based thermochemical water splitting cycle can help achieve better environment and sustainability due to high exergetic efficiency. By the way, economic and technical issues of the storage and transportation of the hydrogen can find a proper solution if the hydrogen production reaction of the Boron thermochemical water splitting cycle takes place on-board of a vehicle.  相似文献   

17.
Using solid oxide membrane, this paper presents the theoretical modeling of the high temperature electrolysis of hydrogen bromide gas for hydrogen production. The electrolysis of hydrogen halides such as hydrogen bromide is an attractive process, which can be coupled to hybrid thermochemical cycles. The high temperature electrolyzer model developed in the present study includes concentration, ohmic, and activation losses. Exergy efficiency, as well as energy efficiency parameters, are used to express the thermodynamic performance of the electrolyzer. Moreover, a detailed parametric study is performed to observe the effects of various parameters such as current density and operating temperature on the overall system behavior. The results show that in order to produce 1 mol of hydrogen, 1.1 V of the applied potential is required, which is approximately 0.8 V less compared to high temperature steam electrolysis under same conditions (current density of 1000 A/m2 and temperature of 1073 K). Furthermore, it is found that with the use of the presented electrolyzer, one can achieve energy and exergy efficiencies of about 56.7% and 53.8%, respectively. The results presented in this study suggest that, by employing the proposed electrolyzer, two-step thermochemical cycle for hydrogen production may become more attractive especially for nuclear- and concentrated solar-to-hydrogen conversion applications.  相似文献   

18.
Photovoltaic (PV) to electrolyzer power systems are an attractive research topic since the PV produced power can be optimized by skipping power conversion into AC and producing a direct DC-DC interface. Existing DC-DC power conversion systems to directly interface the PV generation and Hydrogen (H2) electrolyzer are mainly based in interleaved structures or multi-resonant converters. Soft-switching characteristics are also suitable for these conversion topologies and DCX converters are then serious candidates to be used. DCX provides an isolated high efficiency solution but the DCX-based two-stage converter topology must be optimized in order to obtain better efficiency and energy yield. In this work a detailed comparison of DCX topologies is given for a PV to H2 application. The proposed optimized system is validated through simulation in a multi-string electrolysis system, showing the relevance of the solution for this application. The proposed approach reaches a global maximum efficiency of 98.2%.  相似文献   

19.
A MnO/NaOH based three-step thermochemical water splitting cycle was modified to improve the hydrolysis of α-NaMnO2 (sodium manganate) and to recover Mn(III) oxides for the high-temperature reduction step. Sodium manganate forms in the reaction of NaOH with MnO that releases hydrogen. The hydrolysis of α-NaMnO2 to manganese oxides and NaOH is incomplete even with a large excess of water and more than 10% sodium cannot be removed prior to the high-temperature reduction step.When mixed oxides of manganese with iron were used in the cycle, the NaOH recovery in the hydrolysis step improved from about 10% to 35% at NaOH concentrations above 1M. Only 60% sodium was removed at 0.5M from the mixed oxides whereas more than 80% can be recovered at the same NaOH concentration when only manganese oxides are used. A 10:1 Mn/Fe sample was cycled through all steps three times to confirm that multiple cycles are possible. The high-temperature reduction was carried out for 5h at 1773 K under vacuum and the conversion was about 65% after the 3rd cycle.Since sodium carryover into the high-temperature reduction cannot be avoided, even with the energy intensive hydrolysis step, a modified two-step cycle without low-temperature sodium recovery is proposed where α-NaMnO2 is reduced directly to MnO at 1773 K under vacuum. On a laboratory scale, about 60% of the sodium that volatilized at the high temperatures was trapped with a water-cooled cold finger and conversions were stable at about 35% after three completed cycles.  相似文献   

20.
Production of chemical fuels using solar energy has been a field of intense research recently, and two-step thermochemical cycling of reactive oxides has emerged as a promising route. In this process, the oxide of interest is cyclically exposed to an inert gas, which induces (partial) reduction of the oxide at a high temperature, and to an oxidizing gas of either H2O or CO2 at the same or lower temperature, which reoxidizes the oxide, releasing H2 or CO. Thermochemical cycling of porous ceria was performed here under realistic conditions to identify the limiting factor for hydrogen production rates. The material, with 88% porosity and moderate specific surface area, was reduced at 1500 °C under inert gas with 10 ppm residual O2, then reoxidized with H2O under flow of 600 sccm g?1 of 20% H2O in Ar to produce H2. The fuel production process transitions from one controlled by surface reaction kinetics at temperatures below ~1000 °C to one controlled by the rate at which the reactant gas is supplied at temperatures above ~1100 °C. The reduction of ceria, when heated from 800 to 1500 °C, is observed to be gas limited at a temperature ramp rate of 50 °C min?1 at a flow of 1000 sccm g?1 of 10 ppm O2 in Ar. Consistent with these observations, application of Rh catalyst particles improves the oxidation rate at low temperatures, but provides no benefit at high temperatures for either oxidation or reduction. The implications of these results for solar thermochemical reactors are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号