首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Liu  Yao  Xu  Zhitong  Qiao  Kaiming  Zhou  Houbo  Shen  Feiran  Yang  Tianzi  Wang  Jing  Ma  Tianyu  Hu  Fengxia  Shen  Baogen 《Journal of Materials Science》2021,56(36):20060-20070

The caloric effects under combined applications of magnetic field and hydrostatic pressure to a MnCoSi meta-magnet were investigated. Under a magnetic field change of 0–5 T, the maximum magnetic entropy change was enhanced by 35.7% when a 3.2kbar hydrostatic pressure was applied, and the cooling temperature span was extended by 60 K when a hydrostatic pressure of 9.7 kbar was applied. The coupled caloric entropy change, which originates from the coupling between the magnetism and volume, was calculated and accounted for the enhanced entropy change of MnCoSi. The present work facilitates the use of MnCoSi as a solid-state refrigerant and also enriches the investigation of the multicaloric effect under multiple external fields.

Graphical abstract
  相似文献   

2.
Xi  Jufang  Zhang  Liyun  Zheng  Wenting  Zeng  Qingle  He  Yi  He  Ze  Chen  Jingyu 《Journal of Materials Science》2021,56(32):18061-18077

Highly efficient adsorbents, which can effectively remove both metal ions and dyes from wastewater with robust stability, are strongly required for the remediation of current polluted aqueous system, but still a challenge to be realized. Herein, a new adsorbent has been designed to solve this problem by anchoring diethylene triamine pentaacetic acid (DTPA) grafted polyethyleneimine (PEI) onto carboxylated GO (GOC-g-PD). Given the amino and carboxyl active groups from PEI and GOC/DTPA, our GOC-g-PD displays good adsorption capacity against not only inorganic metal ions (Cu2+ and Pb2+) but also organic dye (methylene blue: MB). The maximum adsorption capacity of GOC-g-PD for Cu2+, Pb2+ and MB reached 309.60 mg·g?1, 316.17 mg·g?1 and 262.10 mg·g?1, respectively. Furthermore, our GOC-g-PD also exhibits good cycling stability and chemical stability against wide pH values. These outstanding properties revealed our GOC-g-PD held great potential in purifying the sewage discharged from industries.

Graphical abstract
  相似文献   

3.

The electrical conductivity and piezoresistivity of multiwall carbon nanotube (MWCNT)/polypropylene (PP) composites obtained by extrusion are investigated, with particular attention to the possible directional effects generated during the extrusion process. This is accomplished by investigating the electrical and electromechanical responses of the nanocomposites at three MWCNT weight concentrations (3, 4 and 5 wt%) in three directions, viz. the extrusion direction, transverse to extrusion (in-plane) and through thickness. Higher electrical conductivity in the extrusion direction was more evident for the lowest MWCNT content. However, the piezoresistive sensitivity was similar in all directions. Films with 4 wt% showed the highest piezoresistive sensitivity, reaching gage factors of?~?4.5 for strains between 0 and 0.8%, and?~?10.2 for strains between 1 and 3%. After an initial drop in the electrical resistance, concomitant with stress relaxation, the changes in electrical resistance showed large reproducibility. Digital image correlation conducted during cyclic piezoresistive testing at 0.8% strain indicates small accumulation of local plasticity as the number of cycles increases, especially in zones near the electrodes. These irreversible changes in the material are expected to trigger the permanent changes in the electrical resistance measured.

Graphical abstract
  相似文献   

4.
Wei  Yongxing  Bai  Chenxing  Jin  Changqing  Zhu  Weitong  Jian  Zengyun  Nan  Ruihua  Hu  Lin  Dai  Zhonghua 《Journal of Materials Science》2021,56(20):11838-11846

Here, we report a multiferroic relaxor material 0.41Bi(Ni1/2Zr1/2)O3–0.59PbTiO3, which exhibits a large piezoelectric coefficient (d33, 391 pC/N), high remnant polarization (Pr, 52.3 μC/cm2) and a high electrical freezing temperature (Tf, 498 K). The electric-field-induced transition from a cubic-like phase to a tetragonal phase was confirmed by the XRD patterns and first-cycle bipolar electrostrain loop. The magnetization and magnetic field relationship changes from nonlinear to linear when cooled from 300 to 2 K. The unusual trend in magnetic behavior could be interpreted as the transitions between the super short-range orderings. Furthermore, the maximum value of magnetization shows a 14% decrease at 300 K after electrical poling.

Graphical abstract
  相似文献   

5.
Wu  Xin  Luo  Qunyi  Yin  Sixing  Lu  Wentao  He  Hua  Guo  Cun-Yue 《Journal of Materials Science》2021,56(35):19311-19328

Organic/inorganic thermoelectric composites have played an important role in the development of new, green, and renewable energy sources with potential applications in efficient thermal management, flexible electronics, and bioelectronics. Electrochemical syntheses, including electropolymerization, electrochemical deposition, electrochemical doping, electrochemical post-processing, etc., require no addition of surfactants or oxidants, the products of which are easy to separate and purify, providing clean, efficient, and facile routes for the preparation of organic thermoelectric materials and their composites. In this review, the preparation, properties, and applications of organic/inorganic thermoelectric composites from electrochemical synthesis were reviewed in detail, offering a perspective on the recent advances in the field.

Graphical abstract
  相似文献   

6.
Zhang  Yuhang  Li  Jiejie  Zhou  Hongjian  Hu  Yiqun  Ding  Suhang  Xia  Re 《Journal of Materials Science》2021,56(28):15906-15920

Cold welding technique at room temperature is the preferred option in nano-assembly and nano-jointing. In this study, the cold welding behavior and mechanical strength of Cu50Zr50 metallic glass nanowires (MGNWs) in head-to-head contact are investigated by molecular dynamics simulation based on the embedded atom method potential. Effects of welding velocity, operating temperature, and size of nanowires are discussed with the consideration of stress, shear strain, atomic deformation processes, and weld quality. Our simulation results demonstrate that a desirable weld quality can be obtained at room temperature. With an increase in welding velocity, the shear deformation zones of the welded MGNWs increase, leading to a decrease in mechanical strength. However, the effect of temperature on the weld quality is not pronounced. Besides, the elongation ability of the welded MGNWs increases with increasing diameters of nanowires. Smaller diameter results in better weld quality due to the size effect of metallic glass. For a pair of MGNWs with different diameters, the necking and fracture of the welded MGNWs occur in the regions of the nanowire with a relatively smaller diameter. This study carries major implications for the fabrication and structural assembly of metallic glass-based nanomaterials.

Graphical Abstract
  相似文献   

7.
Li  Zhenwei  Lin  Zijia  Han  Meisheng  Mu  Yongbiao  Yu  Jie 《Journal of Materials Science》2021,56(26):14542-14555

Carbon nanomaterials have shown great potential as electric heating elements in electrothermal applications. However, carbon-based heating elements with high flexibility, ultrafast electrothermal response, low driving voltage, high heating temperature, and stretchability are still lacking. Here, continuous electrospun carbon nanofiber films (CNFFs) and corresponding composite films additionally containing silicone (CSCFs) as electric heating elements are proposed. CNFFs were prepared by electrospinning and subsequent heat treatment, and CSCFs were prepared by composing CNFFs with silicone via hot-pressing procedure. Both of them have shown excellent performance as electrothermal films, such as ultrafast electrothermal response, high resistance adjustability, high flexibility, high operation stability, and high infrared emissivity. In particular, a temperature as high as 200 °C can be reached within 2 s at 8 V. Suitable robustness and flexibility allow CSCFs to bear various deformations, such as bending, twisting, folding, and even stretching by a factor of 1.3, without worsening electrothermal performance. Also, excellent water resistance has been confirmed. The superior electrothermal performance is mainly attributed to the high electrical conductivity, continuous fiber structure, high specific surface area, and adjustability of nanofiber stacking density and thickness of CNFFs.

Graphical abstract
  相似文献   

8.

The kinetics of electrochemical corrosion of aluminum alloy (AlMg6) surfaces with different wettability was analyzed. The surfaces were processed by three different methods, in particular, polishing, laser texturing, the combination of laser texturing and low-temperature heating. After laser processing, the dimple-like texture was formed on the surface, and the wettability significantly enhanced. Low-temperature heating of laser-textured AlMg6 alloy surfaces led to the wettability inversion from strongly hydrophilicity to superhydrophobicity. Microscopic and profilometric methods were used to estimate the surface degradation due to corrosion when aggressive solution droplets (a mixture of NaCl and hydrogen peroxide aqueous solutions) evaporated. The potentiodynamic polarization measurements of AlMg6 alloy surfaces were conducted. The typical modes of corrosion and evaporation of aggressive solution droplets were detected. The kinetics of corrosion was estimated by the behavior of the corrosion area evolution. In addition, when immersing laser-textured sample with strongly hydrophilic properties into aggressive solution, the higher corrosion rate was found in the liquid meniscus region (aggressive mixture / alloy / air interface) compared to the textured site immersed in the mixture. This was explained by convection increasing the rate of reaction products removal and promoting a stronger deviation from the equilibrium state in the aggressive mixture. Experimental results of the potentiodynamic polarization measurements revealed that laser-textured samples exhibit enhanced corrosion protective properties compared to polished samples.

Graphical abstract
  相似文献   

9.

In this study, poly(L-lactic acid) (PLA)/low molar mass alkali lignin (aL) (1%, 5% and 10% w/w) composites were prepared primarily for a comprehensive understanding of the effect of aL on their antimicrobial properties, biocompatibility and cytotoxic behavior. The properties were evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetry and X-ray diffraction. The mechanical, water vapor barrier properties and photodegradability were analyzed as well. The results showed a significant inhibiting effect of aL on the crystallization behavior of PLA, increased water barrier properties (up to 73%) and photodegradability. PLA/aL composites showed a tenfold reduction in Gram-positive bacteria viability, very good cellular response and very low cytotoxicity levels, thus validating these materials as non-cytotoxic and with high potential to be used as food packaging.

Graphical abstract
  相似文献   

10.
Gao  Yuan  Zhou  Xinghai  Zhang  Maliang  Li  Zhenhuan 《Journal of Materials Science》2021,56(20):11736-11748

In view of the disadvantages of concentration polarization and trade-off effects in the application of membrane in desalination field, oxide-nano graphene oxide/polyamide (O-NGO/PA) loose intermediate layer and PA ultra-thin dense layer were introduced to fabricate PA/O-NGO/polyphenylene sulfide composite membrane with sandwich structure via multi-step interfacial polymerization (MS-IP) method. The selective permeation mechanism of ultrathin layer produced by different aqueous monomers (PIP and MPD) was studied, the effect of its physicochemical structure on the relief of concentration polarization phenomenon and the breakthrough of trade-off effect was analyzed. The ultra-thin and dense PA layer mainly played the role of interception and shortened the water molecular penetration path. In the retention test of metal salt solution, compared with the rough surface, it was found that the smooth surface was more conducive to the diffusion of intercepted metal ions into the feed solution, thus alleviating the concentration polarization phenomenon.

Graphical abstract
  相似文献   

11.

In this critical note, the thermal stability behavior of ultra-fine grained (UFG) and nano-structured (NS) metals and alloys produced through severe plastic deformation (SPD) techniques is reviewed. For this case, the common engineering metals with body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) crystal structures such as aluminum, copper, nickel, magnesium, steel, titanium, and their relating alloys were assessed. Microstructural evolution in these severely deformed materials following post-processing annealing treatment was investigated for various times and temperatures below the recrystallization point. The microstructure development reported in the literature was studied in terms of the stable grain structures correlated with different levels of plastic straining. The stacking fault energy (SFE) is noted to be a key issue which has a critical influence in predicting the coalescence or coarsening behavior of ultra-fine and nanoscale grains after SPD treatment by controlling the cross-slip phenomenon for screw dislocations.

Graphical Abstract
  相似文献   

12.

Silica aerogel composites reinforced with different aramid fibres have been synthesized and compared considering their potential use in thermal protection systems of Space devices. These composites were prepared from tetraethoxysilane and vinyltrimethoxysilane and the network was strengthened with aramid fibres. The results showed that the physical and chemical properties of the fibres were relevant, leading to composites with different properties/performance. In general, the obtained values for bulk density were low, down to 150 kg m?3. Very good thermal properties were achieved, reaching thermal conductivities bellow 30 mW m?1 K?1, and thermal stability up to 550 °C in all cases. Short length fibres produce stiffer composites with lower thermal conductivities, while among longer fibres, meta-aramid-containing fibres lead to nanocomposites with best insulation performance. Standard tests for Space materials qualification, as thermal cycling and outgassing, were conducted to assess the compliance with Space conditions, confirming the suitability of these aerogel composites for this application.

Graphical abstract
  相似文献   

13.
Cen  Hongyu  Wu  Chonggang  Chen  Zhenyu 《Journal of Materials Science》2022,57(3):1810-1832

Extension of corrosion inhibitors from traditional molecular-scale to nanoscale will not only be significant to develop green and efficient inhibitors, but also supplement the discipline system of corrosion inhibitors. However, many research on the interfacial behavior of nano-inhibitors have ignored the special colloidal properties of nanoparticles and show no obvious differences with traditional inhibitors. In this study, graphene oxide (GO) was functionalized with polydopamine (PDA) via covalent modifications and self-polymerization, and GO-PDA was studied as a corrosion inhibitor of carbon steel in HCl solution. Diversified measurements confirmed that GO-PDA can effectively protect carbon steel from corrosion, and the inhibition efficiency almost reached 90% at 100 mg/L. Interfering factors including immersion time and concentration were investigated. The lamellar nanoparticles adsorbed on the surface of carbon steel have formed a hydrophobic film in micro-nano structures. The transition from a negative charge on the GO surface to a positively charged GO-PDA contributed to adsorption at the interface. An initial model of nano-inhibitor was established to explicate the inhibition mechanism.

Graphical abstract
  相似文献   

14.
Liao  Meiju  Su  Long  Deng  Yaocheng  Xiong  Sheng  Tang  Rongdi  Wu  Zhibin  Ding  Chunxia  Yang  Lihua  Gong  Daoxin 《Journal of Materials Science》2021,56(26):14416-14447

WO3, a visible light reaction catalyst, absorbs light at a wavelength of 470 nm and has many advantages, such as strong stability, long life, non-toxicity, low cost, and suitable band edges. In this review, the photocatalytic mechanism of WO3 in water pollution treatment is introduced, as well as a systematic summary, and some main strategies for improving the photocatalytic activity of WO3 in water pollution treatment are introduced, for example surface and morphology control, synthetic heterojunctions, and doping element. Finally, the main conclusions and prospects of WO3-based photocatalysts are pointed out. It can be expected that this review can provide guidance for designing low-cost, high-efficiency new WO3-based photocatalysts in the process of water pollution treatment and can meet the application prospects of efficient utilization of solar degradation in the field of environmental purification.

Graphical abstract
  相似文献   

15.
He  Qihang  Wang  Xuejiao  Zhou  Pengcheng  Ge  Qianao  Fu  Tongxing  Chen  Shouxian  Xiao  Feng  Yang  Peilin  He  Ping  Jia  Lingpu  Yang  Dingming 《Journal of Materials Science》2021,56(36):20037-20049

The development of hydrogen production via environment-friendly and efficient electrochemical water splitting technology leans heavily on the exploitation of highly active and durable oxygen evolution reaction (OER) electrocatalysts. Herein, nanocoral-like cerium-activated cobalt selenide (Ce-CoSe2) nanocomposites to enhance the OER catalytic activity have been successfully prepared by one-pot hydrothermal route via simply altering the cerium content. Owing to the ingenious introduction of cerium, as-prepared Ce-CoSe2 electrode displays remarkable OER performance in comparison with CoSe2. The nanocoral-like Ce-CoSe2 catalyst prepared under optimal condition just needs low overpotential of 276 and 398 mV at 10 and 50 mA cm?2, respectively. Additionally, it attains the current density of 255 mA cm?2 at the potential of 2.0 V vs. RHE, and shows long-term stability during OER. This work offers a simple and feasible pathway for the design and construct of metal dichalcogenides for green and renewable hydrogen production by electrocatalytic water splitting.

Graphical abstract
  相似文献   

16.
Zhang  Kai  Zhang  Mingming  Zhu  Ningning  Yin  Hongning  Xing  Jun  Wang  Lei 《Journal of Materials Science》2021,56(19):11436-11447

Perovskite light-emitting diodes (PeLEDs) have attracted considerable attention due to their low cost, high efficiency and narrowband emission. However, poor operational lifetime limits their practical application and the degradation mechanism is not yet clear. Herein, the effect of typical phenylalkylamine and alkylamine ligands on optoelectrical properties and operational stability of cesium/methylammonium lead bromide PeLEDs were systematically investigated. The phenylethylamine (PEA) modified PeLED shows a champion maximum external quantum efficiency (EQE) of 9.35%, which is much better than that of phenylmethylamine (PMA) and phenylbutylamine (PBA) modified devices. For alkylamine-based devices, the maximum EQEs gradually rise from 2.72 to 6.33% and 6.66% as increase of alkyl chain length. PEA modified device exhibits the best half-lifetime of 114 min and alkylamine-based devices exhibit almost equal T50 of approximately 20 min. X-ray diffraction measurements show that the dominant diffraction peaks of pervoskite films disappear or shift and scanning electron microscope detected that many pinholes appeared in perovskite films after operation. Combining with the results of X-ray photoelectron spectroscopy, we conclude that the recrystallization of perovskite occurred during the operation causes the film change in morphology and crystallinity, ultimately result in the degradation of PeLEDs.

Graphical abstract

The effect of typical phenylalkylamine and alkylamine ligands on optoelectrical properties and operational stability of PeLEDs were systematically investigated. The phenylethylamine modified PeLED shows a champion maximum EQE of 9.35% and the best operational lifetime of 114 min. We concluded that the decomposition and recrystallization of perovskite occurred during the operation causes the film change in morphology and crystallinity, ultimately result in the degradation of PeLEDs.

  相似文献   

17.
Luo  Huxin  Liu  Xingchong  Zhuang  Jia  Li  Haimin  Wang  Hanyu  Ma  Zhu  Xiang  Yan  Peng  Xian  Ouyang  Yukun  Zhou  Ruonan  Gong  Xiaoli 《Journal of Materials Science》2021,56(35):19552-19563

Planar perovskite solar cells (PSCs) have excellent photoelectric properties and show great commercialization potential. However, there are a lot of crystal defects in the perovskite films prepared by solution method, which reduces the development process of solar cells. In this work, alizarin red s (ARS) was doped into MAPbI3 films to passivate the defect. It was shown that the addition of ARS increased the quality of perovskite film and doped perovskite film exhibited improved light absorption. In addition, it was found that there was a strong interaction between ARS and perovskite, which reduced the density of defect states. The results showed that the passivated perovskite device had improved PL intensity, increased carrier lifetimes and reduced charge recombination. After passivation, the device obtained a higher open-circuit voltage (VOC) of 1.103 V where the control device was 1.055 V, and the best power conversion efficiency (PCE) of the doped device was 18.82%, which is 11.36% higher than that of the control device of 16.90%.

Graphical abstract
  相似文献   

18.
Li  Xiaowei  Zhang  Haiyang  Dong  Jing  Ma  Shujuan  Ou  Junjie 《Journal of Materials Science》2021,56(32):18006-18018

A novel bilirubin adsorbent with high hydrophilicity was facilely synthesized via one-step hydrothermal carbonization reaction by using glucose and [3-(methacryloylamino)propyl]trimethylammonium chloride (MAPTAC) as precursors, in which sustainable carbohydrate could be converted into functionalized carbonaceous materials enriched with quaternary ammonium groups using an environmentally mild process. The properties of synthesized adsorbents were characterized by helium ion microscopy, static water contact angle measurement, FT-IR, elemental analysis and nitrogen adsorption/desorption measurement. The contact angle results indicated that these materials possessed very good hydrophilicity along with the lowest contact angle at 16.2°. Moreover, the hydrophilic adsorbent prepared by only one-step demonstrated good adsorption capacity toward bilirubin (141 mg/g) than commercialized activated carbon (70 mg/g) and low non-specific adsorption toward albumin (0.21%), which had great potential to be used in hemoperfusion. In addition, kinetic adsorption behaviors were conducted using pseudo-first-order and pseudo-second-order models. The regression results showed that the kinetic adsorption data were more accurately represented by pseudo-second-order model. The equilibrium adsorption data were analyzed using two widely applied isotherm models: Langmuir and Freundlich. The results revealed that Langmuir isotherm matched the experimental results well.

Graphical Abstract
  相似文献   

19.

Aquivion membrane displays improved properties as compared to Nafion membrane, partly due to shorter side chains. However, some improvements are still necessary for proton exchange membrane fuel cell to operate at low relative humidity. To overcome this drawback, the addition of clay nanoparticle into the Aquivion matrix can be considered. In this study, different composite membranes have been prepared mixing short-side-chain PFSA (perfluorosulfonic acid) Aquivion and selectively modified halloysite nanotubes for PEMFC low relative humidity operation. Halloysites were grafted with fluorinated groups, sulfonated groups, or perfluoro-sulfonated groups on inner or outer surface of the tubes. The obtained composite membranes showed improved properties, especially higher water uptake associated with reduced swelling and better mechanical strength compared to pristine Aquivion membrane and commercially available Nafion HP used as reference. The best performance in this study was obtained with Aquivion loaded with 5 wt% of pretreated perfluoro-sulfonated halloysite. The composite membrane, referred to as Aq/pHNT-SF5, displayed the largest water uptake and proton conductivity among the panel of membranes tested. The chemical stability was not affected by the presence of halloysite in the Aquivion matrix.

Graphical abstract
  相似文献   

20.
Ren  Jian-kun  Chen  Yun  Cao  Yan-fei  Xu  Bin  Sun  Ming-yue  Li  Dian-zhong 《Journal of Materials Science》2021,56(21):12455-12474

Non-dendritic microstructures are generally obtained in metals after semi-solid deformation (deformation during solidification); however, dendritic growth is preferred without deformation. The fragmentation of dendrites is recognized as an essential contributing factor to non-dendritic microstructures. However, the underlying mechanism of fragmentation needs to be clarified in depth. It is infamously hard for researchers to carry out a direct observation of this process. Moreover, a comprehensive numerical survey of this process is not trivial. The present research reported a new method to model dendritic growth during semi-solid deformation. The motion and deformation of the solid coupled with liquid flow in the melt were treated as the two-phase flow because plastic materials could be formulated as non-Newtonian fluids. The vector-valued phase-field formulation and the self-constructed Navier–Stokes solver made it possible to simulate the growth, motion, deformation, fragmentation and agglomeration of two dendrites coupled with liquid flow in the melt. Computational results suggest that fragmentation can occur when the grain boundary is wet and penetrated by the melt, giving new supporting evidence to a previously proposed mechanism for the fragmentation of dendrites.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号