首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《能源学会志》2020,93(6):2488-2496
The thermocatalytic alteration of CH4 into highly pure hydrogen and filaments of carbon was investigated on a series of Ni-catalysts with various contents (25, 40, 55, and 70 wt%) supported mesoporous spherical SiO2. The silica with ordered structure and high specific surface area (1136 m2/g) was synthesized using the Stöber technique with TEOS as a silica precursor and CTAB as the template in a simple synthesis system of aqueous-phase. This technique led to the preparation of mesoporous spherical silica. The prepared samples were characterized using BET, TPR, XRD, TPO, and SEM analyses. The prepared catalysts with different nickel loading showed the BET surface area ranging from 225.0 to 725.7 m2/g. These results indicated that an increase in nickel content decreases the surface area and leads to a subsequent collapse of a pore structure. SEM analysis confirmed a spherical nanostructure of catalysts and revealed that with the increase in loading of Ni, the particle size enlarged, because of the agglomeration of the particles. The results implied that the high methane conversion of 54% obtained over the 55 wt% Ni/SiO2 at 575 °C and this sample had higher stability at lower reaction temperature than the other prepared catalysts, slowly deactivation was observed for this catalyst at a period of 300 min of time on stream.  相似文献   

2.
In this work, a sol-gel Ni–Mo2C–Al2O3 catalyst is employed for the first time in the glycerol steam reforming for syngas production. Catalyst stability and activity are investigated in the temperature range of 550 °C–700 °C and time on stream up to 30 h. As reaction temperature increases, from 550 °C to 700 °C, H2 yield boosts from 22% to 60%. The stability test, carried out at milder conditions (600 °C and Gas-Hourly Space-Velocity (GHSV) of 50,000 mL h−1.gcat−1), shows high catalyst stability, up to 30 h, with final conversion, H2 yield, and H2/CO ratio of 95%, 53% and 1.95, respectively. Both virgin and spent catalysts have been characterized by a multitude of techniques, e.g., Atomic-Absorption spectroscopy, Raman spectroscopy, N2-adsorption-desorption, and Transmission Electron Microscopy (TEM), among others. Regarding the spent catalysts, carbon deposits’ morphology becomes more graphitic as the reaction temperature increases, and the total coke formation is mitigated by increasing reaction temperature and lowering GHSV.  相似文献   

3.
Syngas production from the dry reforming of methane is now the most extensively utilized method for removing massive amounts of greenhouse emissions. Effective solutions towards the utilization of greenhouse gases such as CO2 and CH4 are scarce, except for power generation in the energy sector, which is a major source of CO2. Herein, dry reforming of methane was experimented for the first time using an effective catalytic system composed of 5% Ni fibrous silica-alumina (FSA) that was successfully fabricated using a hydrothermal method. The characterization results from XRD, FESEM mapping, TEM, BET,XRF, FTIR, H2-TPR, TGA/DTA, and Raman spectra demonstrated that Ni/FSA is composed of orderly Ni dispersion, small particles of Ni, robust basic sites, and high oxygen vacancies which enhanced the catalytic efficiency. The synthesized Ni/FSA also reduced coke formation and had long-term stability with no evidence of inactivation during and after the catalytic cycles. The superior activity of Ni/FSA was manifested in the high conversion rates of CH4 and CO2 at 97% and 92% respectively, with a H2:CO ratio of ≈ 1. The stability of Ni/FSA was also sustained over 30 h of operation at 800 °C. The findings of the Raman, TEM, and TGA/DTA tests revealed that the spent Ni/FSA catalysts did not exhibit graphitic carbon or metal sintering in significant amounts when compared to commercial Ni–Si/Al catalysts.  相似文献   

4.
In recent years, a lot of scientific effort has been put into reusing the energy potential of sugarcane vinasse by dark fermentation. However, the findings so far indicate that new pathways need to be followed. In this context, this study assessed the effect of hydraulic retention time (HRT, from 24 to 1 h) on vinasse fermentation (10, 20, and 30 g COD L?1) in three mesophilic expanded granular sludge bed reactors (EGSB). The carbohydrate conversion remained above 60% at all organic loading rates applied. The maximum hydrogen production rate (8.77 L day?1 L?1) was obtained for 720 kg COD m?3 day?1 and associated to the lactate-acetate pathway. The highest productivities of propionic, acetic, and butyric acids were 3.11, 1.68, and 2.45 g L?1 h?1, respectively, at a HRT of 1 h. At this HRT, the degrees of acidification remained between 54% and 76% in all EGSB reactors. This research provides insights for carboxylate production from sugarcane vinasse and suggests applying the EGSB setup in the acidogenic stage of two-stage processes.  相似文献   

5.
In recent times, biohydrogen production from microalgal feedstock has garnered considerable research interests to sustainably replace the fossil fuels. The present work adapted an integrated approach of utilizing deoiled Scenedesmus obliquus biomass as feedstock for biohydrogen production and valorization of dark fermentation (DF) effluent via biomethanation. The microalgae was cultivated under different CO2 concentration. CO2-air sparging of 5% v/v supported maximum microalgal growth and carbohydrate production with CO2 fixation ability of 727.7 mg L?1 d?1. Thereafter, lipid present in microalgae was extracted for biodiesel production and the deoiled microalgal biomass (DMB) was subjected to different pretreatment techniques to maximize the carbohydrate recovery and biohydrogen yield. Steam heating (121 °C) in coherence with H2SO4 (0.5 N) documented highest carbohydrate recovery of 87.5%. DF of acid-thermal pretreated DMB resulted in maximum H2 yield of 97.6 mL g?1 VS which was almost 10 times higher as compared to untreated DMB (9.8 mL g?1 VS). Subsequent utilization of DF effluent in biomethanation process resulted in cumulative methane production of 1060 mL L?1. The total substrate energy recovered from integrated biofuel production system was 30%. The present study envisages a microalgal biorefinery to produce biohydrogen via DF coupled with concomitant CO2 sequestration.  相似文献   

6.
Various metal nanoparticle catalysts supported on Vulcan XC-72 and carbon-nanomaterial-based catalysts were fabricated and compared and assessed as substitutes of platinum in microbial electrolysis cells (MECs). The metal-nanoparticle-loaded cathodes exhibited relatively better hydrogen production and electrochemical properties than cathodes coated with carbon nanoparticles (CNPs) and carbon nanotubes (CNTs) did. Catalysts containing Pt (alone or mixed with other metals) most effectively produced hydrogen in terms of overall conversion efficiency, followed by Ni alone or combined with other metals in the order: Pt/C (80.6%) > PtNi/C (76.8%) > PtCu/C (72.6%) > Ni/C (73.0%) > Cu/C (65.8%) > CNPs (47.0%) > CNTs (38.9%) > plain carbon felt (38.7%). Further, in terms of long-term catalytic stability, Ni-based catalysts degraded to a lesser extent over time than did the Cu/C catalyst (which showed the maximum degradation). Overall, the hydrogen generation efficiency, catalyst stability, and current density of the Ni-based catalysts were almost comparable to those of Pt catalysts. Thus, Ni is an effective and inexpensive alternative to Pt catalysts for hydrogen production by MECs.  相似文献   

7.
The objective of this study was to evaluate the effects of hydraulic retention time (HRT) (8–1 h) on H2 production from sugarcane juice (5000 mg COD L−1) in mesophilic (30 °C, AFBR-30) and thermophilic (55 °C, AFBR-55) anaerobic fluidized bed reactors (AFBRs). At HRTs of 8 and 1 h in AFBR-30, the H2 production rates were 60 and 116 mL H2 h−1 L−1, the hydrogen yields were 0.60 and 0.10 mol H2 mol−1 hexose, and the highest bacterial diversities were 2.47 and 2.34, respectively. In AFBR-55, the decrease in the HRT from 8 to 1 h increased the hydrogen production rate to 501 mL H2 h−1 L−1 at the HRT of 1 h. The maximum hydrogen yield of 1.52 mol H2 mol−1 hexose was observed at the HRT of 2 h and was associated with the lowest bacterial diversity (0.92) and highest bacterial dominance (0.52).  相似文献   

8.
This study aimed to evaluate the effect of the organic loading rate (OLR) (60, 90, and 120 g Chemical Oxygen Demand (COD). L?1. d?1) on hydrogen production from cheese whey and glycerol fermentation as cosubstrates (50% cheese whey and 50% glycerol on a COD basis) in a thermophilic fluidized bed reactor (55 °C). The increase in the OLR to 90 gCOD.L?1. d?1 favored the hydrogen production rate (HPR) (3.9 L H2. L?1. d?1) and hydrogen yield (HY) (1.7 mmol H2. gCOD?1app) concomitant with the production of butyric and acetic acids. Employing 16S rRNA gene sequencing, the highest hydrogen production was related to the detection of Thermoanaerobacterium (34.9%), Pseudomonas (14.5%), and Clostridium (4.7%). Conversely, at 120 gCOD.L?1. d?1, HPR and HY decreased to 2.5 L H2. L?1. d?1 and 0.8 mmol H2. gCOD?1app, respectively, due to lactic acid production that was related to the genera Thermoanaerobacterium (50.91%) and Tumebacillus (23.56%). Cofermentation favored hydrogen production at higher OLRs than cheese whey single fermentation.  相似文献   

9.
Developing cheap and highly durable non-noble metal catalysts for water electrolysis to sustainably produce hydrogen as alternatives to platinum-based catalysts is essential. Herein, we report graphene-encapsulated NiMo alloys as acid-stable non-noble metal catalyst electrodes. The graphene-encapsulated NiMo cathode showed a highly stable performance in the potential cycling test (10,000 cycles) from 0 to 5.0 A cm−2 and 100 h of durability at a 2.2 V constant cell voltage. A balance between catalytic activity and corrosion in acidic environments was achieved by tuning the number of N-doped graphene layers. Through their application in a full-cell PEM-type water electrolyzer, we verify that noble metal catalysts can be replaced by non-noble metal catalysts. Such cheap acid-stable non-noble metal electrodes have promising practical applications in PEM-type water electrolysis.  相似文献   

10.
ZIF-67 derived catalysts for Fischer-Tropsch synthesis have attracted much attention in recent years, while there is still a potential to improve their activity and selectivity. In this work, we prepared Si/Al co-immobilized Co3O4@SixAly catalysts by in-situ doping tetraethylorthosilicate and aluminum nitrate during the synthesis of ZIF-67. The effects of different Si/Al ratios on the metal-support interaction, acidity and FTS performance were explored. Results indicated that the Co3O4@Si0Al4 catalyst exhibited the best FTS performance with the CO conversion as high as 79.9% and CTY (cobalt time yield) value of 19.5 × 10?5 molCO·gCo?1·s?1, which was ascribed to the moderate metal-support interaction and the most active Co sites. Meanwhile, the Co3O4@Si3Al1 and Co3O4@Si2Al2 catalysts exhibited higher iso-paraffin and olefin selectivity due to more acidic sites.  相似文献   

11.
This work explores the production of biohydrogen from brewery wastewater using as inoculum a culture produced by natural fermentation of synthetic wastewater and Klebsiella pneumoniae isolated from the environment. Klebsiella pneumoniae showed good performance as inoculum, as evaluated using assays of between 9 and 16 cycles, with durations of 12 and 24 h, carbohydrate concentrations from 2.79 to 7.22 g L−1, and applied volumetric organic loads from 2.6 to 12.6 g carbohydrate L−1 day−1. The best results were achieved with applied volumetric organic loads of 12.6 g carbohydrate L−1 day−1 and cycle length of 12 h, resulting in mean volumetric productivity of 0.88 L H2 L−1 day−1, maximum molar flow of 10.80 mmol H2 h−1, and mean yield of 0.70 mol H2 mol−1 glucose consumed. The biogas H2 content was between 18 and 42%, while the mean organic compounds removal and carbohydrate conversion efficiencies were 23 and 81%, respectively. The inoculum produced by natural fermentation was not viable.  相似文献   

12.
Polyaniline is a typical conducting polymer with high migration electron rate, good stability, eco-friendly properties, and high absorption coefficients for visible light. In the present study, polyaniline decorated Pt@TiO2 for visible light-driven H2 generation is reported for the first time. The above-mentioned nanocomposite is prepared through a simple oxidative-polymerization and characterized by infrared spectroscopy, transmission electron microscopy, X–ray diffraction, thermogravimetric analysis, and ultraviolet–visible diffuse reflectance spectra. Polyaniline modification improves the absorption of the nanocomposite in visible light region via a photosensitization effect similar to dye–sensitization but does not influence the crystal structure and size of Pt@TiO2. The polyaniline modified Pt@TiO2 exhibits a remarkable visible light activity (61.8 μmol h−1 g−1) and good stability for H2 generation (with an average apparent quantum yield of 10.1%) with thioglycolic acid as an electron donor. This work provides new insights into using conducting polymers, including polyaniline, as a sensitizer to modify Pt@TiO2 for visible-light hydrogen generation.  相似文献   

13.
TiO2 quantum dots-sensitized Cu2S (Cu2S/TiO2) nanocomposites with varying concentration of TiO2 QDs are synthesized via a facile two-stage hydrothermal-wet impregnation method. X-ray diffraction analysis confirms the formation of Cu2S and TiO2with chalcocite and anatase phases, respectively. The observed shoulder-like absorption peaks indicate the UV–visible light-driven properties of the composite. Morphological analysis reveals that the fabricated Cu2S/TiO2 composite consists of Cu2S with a nano rod-like shape (average length and width of ~856 and ~213 nm, respectively) and nanosheets-like structures (average length and width of ~283 and ~289 nm, respectively), whereas the TiO2 is formed as quantum dots with a size range of 8.2 ± 0.4 nm. Chemical state analysis shows the presence of Cu+, S2?, Ni2+, and O2? in the nanocomposite. The H2 evolution rate over the optimized photocatalyst is found to be ~45.6 mmol h?1g?1cat under simulated solar irradiation, which is around 5 and 2.4-fold higher than that of the pristine TiO2 and Cu2S, respectively. Continuous H2 production for 30 h is achieved during time-on-stream experiments, demonstrating the excellent stability and durability of the Cu2S/TiO2 photocatalyst for large-scale applications.  相似文献   

14.
Ni/red mud (RM) catalysts were prepared by wet impregnation and used in the catalytic steam gasification of bamboo sawdust (BS) to produce hydrogen-rich syngas. The system was optimized in terms of the amount of added nickel (10%), reaction temperature (800 °C), and catalyst placement (separately behind the BS). The maximum H2 yield was 17.3% higher than that using pure RM catalyst and 43.8% higher than that of BS gasification alone, and the H2/CO ratio in the syngas reached 7.82. This Ni/RM catalyst also retained good activity after six cycles in a double-stage fixed bed reactor. Analysis using X-ray fluorescence, X-ray diffraction, scanning electron microscopy-energy dispersive spectroscopy, and other methods revealed that the interaction of Ni, Fe, and Mg in Ni/RM produced bimetallic compounds containing active sites, such as NiFe2O4, MgNiO2, and NiO. This explains the good catalytic performance in the tar conversion during the gasification process.  相似文献   

15.
Cell immobilization and co-culture techniques have gained attention due to its potential to obtain high volumetric hydrogen productivities (QH2). Chitosan retained biomass in the fermentation of co-cultures of Caldicellulosiruptor saccharolyticus and C. owensensis efficiently, up to a maximum dilution rate (D) of 0.9 h?1. Without chitosan, wash out of the co-culture occurred earlier, accompanied with approximately 50% drop in QH2 (D > 0.4 h?1). However, butyl rubber did not show as much potential as carrier material; it did neither improve QH2 nor biomass retention in continuous culture. The population dynamics revealed that C. owensensis was the dominant species (95%) in the presence of chitosan, whereas C. saccharolyticus was the predominant (99%) during cultivation without chitosan. In contrast, the co-culture with rubber as carrier maintained the relative population ratios around 1:1. This study highlighted chitosan as an effective potential carrier for immobilization, thereby paving the way for cost – effective hydrogen production.  相似文献   

16.
Silicon-based nanosheets (SNS) were synthesised via a mild (60 °C) and time-saving (8 h) modified topochemical method. Then, Cu3(BTC)2 and SNS@Cu3(BTC)2 were successfully synthesised by microwave irradiation, and their characteristics and hydrogen storage performance were analysed by multiple techniques. The accordion-like SNS exhibited void spaces, a unique low buckled structure, and ultrathin, almost transparent, loosely stacked layers with a high specific surface area (362 m2/g). After in-situ synthesis with Cu3(BTC)2, the SNS compound achieved a high specific surface area (1526 m2/g), outstanding hydrogen storage performance (5.6 wt%), and a desirable hydrogen diffusion coefficient (10?7). Thus, SNS doping improved the hydrogen storage performance of Cu3(BTC)2 by 64% through electron transfer reactions with Cu enabled by the unique composite nanostructure of SNS@Cu3(BTC)2. This study presents a promising method of synthesising SNS and porous composite materials for hydrogen storage.  相似文献   

17.
The oxygen evolution reaction (OER) at anode requires high overpotential and is still challenging. The metallic core-oxyhydroxide layer structure is an efficient method to lower an overpotential. We synthesized Fe rich FeCo core-Co rich FeCo oxyhydroxide layer with a different particle size of 173 nm, 225 nm, and 387 nm (FeCo 173, 225, 387) through a difference in the reduction rate of Fe/Co precursors using facile modified polyol synthesis. To investigate the effect of conductivity, CoFe2O4 nanoparticles of 80–130 nm were synthesized. Among samples, FeCo 173 showed remarkable catalytic performance of 316 mV at a current density of 10 mA/cm2 in 0.1 M KOH compared to RuO2 (408 mV), FeCo 225 (323 mV), FeCo 387 (334 mV), CoFe2O4 (382 mV). Moreover, FeCo 173 showed good stability for 60,000 s while RuO2 showed a gradual increase in overpotential to maintain 10 mA/cm2 after 15,000 s in chronopotentiometry. The excellent performance was attributed to Fe-rich metallic core, a small amount of Fe doping into CoOOH, and the synergic effect between the active site of Co rich FeCoOOH and conductive Fe rich metallic core. Following this result, it shows that the use of such FeCo electrodes has advantages in the production of hydrogen via electrochemical water oxidation.  相似文献   

18.
The Ni/ZrO2 catalyst doped with Ca and Ni/ZrO2 were employed in the CO2 methanation, a reaction which will possibly be used for storing intermittent energy in the future. The catalysts were characterized by X-ray photoelectron spectroscopy (XPS, reduction in situ), X-ray diffraction (XRD, reduction in situ and Rietveld refinement), electron paramagnetic resonance (EPR), temperature-programmed surface reaction, cyclohexane dehydrogenation model reaction, temperature-programmed desorption of CO2 and chemical analysis. The catalytic behavior of these catalysts in the CO2 methanation was analyzed employing a conventional catalytic test. Adding Ca to Ni/ZrO2, the metallic surface area did not change whereas the CO2 consumption rate almost tripled. The XRD, XPS and EPR analyses showed that Ca+2 but also some Ni2+ are on the ZrO2 surface lattice of the Ni/CaZrO2 catalyst. These cations form pairs which are composed of oxygen vacancies and coordinatively unsaturated sites (cus). By increasing the number of these pairs, the CO2 methanation rate increases. Moreover, the number of active sites of the CO2 methanation rate limiting step (CO and/or formate species decomposition, rls) is enhanced as well, showing that the rls occurs on the vacancies-cus sites pairs.  相似文献   

19.
Synthesis of highly efficient, stable, visible active CuWO4 nanoparticles through a simple methodology, paves a feasible path for enhancing the efficiency of TiO2. A novel nanocomposite of CuWO4 NP loaded TiO2 NR heterojunction was mounted through a direct Z-scheme mechanism. Optimized composite CWT-3, advances the photocatalytic hydrogen production rates of TiO2 to 106.7 mmol h?1 g?1cat. CuWO4 incorporation as OEP compensates inefficiency of WO3 and other Z-scheme combinations reported so far, on limiting the charge carrier recombination followed by the generation of a greater number of excitons. Specific amounts of catalyst loading, study on the effect of sacrificial reagents, and understanding the effect of the light source, are the three pivotal steps that helped here to hamper the density of overall back reactions. The formation of Z-scheme heterojunction was evidently confirmed on determining the position of CBM and VBM, PL and photoelectrochemical analysis. Recyclability studies further proved the stable and efficient outcomes of CWT-3 for five consecutive cycles. Based on photocatalytic activity, employing BDF by-product glycerol as an optimized sacrificial reagent serves the oxidation demands and triggered 53.26% solar to hydrogen conversion efficiency under natural sunlight irradiation.  相似文献   

20.
The catalysts used to facilitate the water gas shift reaction (WGSR) are generally harmful to the environment. Therefore, catalysts that have high activity and stability in WGSR and do not pollute the environment need to be fabricated. Herein, three promoters (La, Pr, and Zr) are added into Co–CeO2 (CoCe) catalyst to improve catalytic performance in a high temperature WGSR to produce high-purity hydrogen from waste-derived synthesis gas. Various techniques are employed to confirm the changes in the properties that affect the catalytic performance. The catalytic reaction is performed at a high gas hourly space velocity to screen the performance of the promoted CoCe catalysts. The CoCeZr catalyst shows the highest CO conversion (XCO = 88% at 450 °C) due to its high Co dispersion and oxygen vacancy resulting from the addition of Zr to the CoCe catalyst; thus, it is most suitable for use in high temperature WGSR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号