首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Having a background of utilising ammonia as an alternative fuel for power generation, exploring the feasibility of co-firing ammonia with methane is proposed to use ammonia to substitute conventional natural gas. However, improvement of the combustion of such fuels can be achieved using conditions that enable an increase of oxygenation, thus fomenting the combustion process of a slower reactive molecule as ammonia. Therefore, the present study looks at oxygen enriched combustion technologies, a proposed concept to improve the performance of ammonia/methane combustion. To investigate the characteristics of ammonia/methane combustion under oxygen enriched conditions, adiabatic burning velocity and burner stabilized laminar flame emissions were studied. Simulation results show that the oxygen enriched method can help to significantly enhance the propagation of ammonia/methane combustion without changing the emission level, which would be quite promising for the design of systems using this fuel for practical applications. Furthermore, to produce low computational-cost flame chemistry for detailed numerical analyses for future combustion studies, three reduced combustion mechanisms of the well-known Konnov’s mechanism were compared in ammonia/methane flame simulations under practical gas turbine combustor conditions. Results show that the reduced reaction mechanisms can provide good results for further analyses of oxygen enriched combustion of ammonia/methane. The results obtained in this study also allow gas turbine designers and modellers to choose the most suitable mechanism for further combustion studies and development.  相似文献   

2.
Recently, ammonia has been explored as a potential fuel for internal combustion engines, gas turbines and other industrial purposes. Ammonia consists of 17.6% by weight of hydrogen and is thus considered a carbon-free emission fuel. The synthesis of ammonia for bulk production takes place using the Haber-Bosch process. The production, storage and transportation of ammonia is relatively safe. This paper reports various aspects of ammonia as an alternative fuel for combustors. Several studies reporting the laminar burning velocity of ammonia and its blends are discussed. Recent advances in the development of chemical kinetics for ammonia combustion are presented. The paper explores all experimental and numerical works on ammonia as a fuel for I C engines, gas turbines and other combustion systems.This review further suggests ways to overcome the disadvantages associated with ammonia combustion, such as lower burning velocities and high NOx emissions.  相似文献   

3.
通过数值模拟对某80 kW微型燃气轮机环形低氮燃烧室进行适当的改造并对其燃烧及NOx生成特性进行研究。研究结果表明:将烧天然气燃料的燃烧室改烧氨/氢混合燃料,在输出功率相同时燃料体积流量增大,通过增加燃料进气喷嘴的直径来降低燃料的进气速度;当掺氢比为0.3时,该结构的燃烧室燃烧不充分,燃烧效率达不到要求;当掺氢比在0.35~0.5、燃料华白数在19.9~21.7范围内变化时,该燃烧室可以实现高效稳定的燃烧,性能接近燃烧天然气燃料;氨/氢混合燃料中掺氢比增大,则NOx排放量也快速增大;由于燃料型NOx排放量占主导地位,该微型燃气轮机燃烧室不能实现低NOx燃烧,NOx排放远超国家标准,需要加装脱硝装置才能实际应用。  相似文献   

4.
This study investigates the characteristics of fuel NOx formation resulting from the combustion of producer gas derived from biomass gasification using different feedstocks. Common industrial burners are optimized for using natural gas or coal-derived syngas. With the increasing demand in using biomass for power generation, it is important to develop burners that can mitigate fuel NOx emissions due to the combustion of ammonia, which is the major nitrogen-containing species in biomass-derived gas. In this study, the combustion process inside the burner is modeled using computational fluid dynamics (CFD) with detailed chemistry. A reduced mechanism (36 species and 198 reactions) is developed from GRI 3.0 in order to reduce the computation time. Combustion simulations are performed for producer gas arising from different feedstocks such as wood gas, wood + 13% DDGS (dried distiller grain soluble) gas and wood + 40% DDGS gas and also at different air equivalence ratios ranging from 1.2 to 2.5. The predicted NOx emissions are compared with the experimental data and good levels of agreement are obtained. It is found out that NOx is very sensitive to the ammonia content in the producer gas. Results show that although NO–NO2 interchanges are the most prominent reactions involving NO, the major NO producing reactions are the oxidation of NH and N at slightly fuel rich conditions and high temperature. Further analysis of results is conducted to determine the conditions favorable for NOx reduction. The results indicate that NOx can be reduced by designing combustion conditions which have fuel rich zones in most of the regions. The results of this study can be used to design low NOx burners for combustion of gas mixtures derived from gasification of biomass. One suggestion to reduce NOx is to produce a diverging flame using a bluff body in the flame region such that NO generated upstream will pass through the fuel rich flame and be reduced.  相似文献   

5.
Ammonia is considered as a promising hydrogen carrier, which is seen as a reliable carbon-free fuel. Improving the combustion properties of ammonia is the focus of current research. The hydrogen could be dissociated from the ammonia in real applications. For purpose of combustion, partially dissociated ammonia could be combusted directly without using extra hydrogen. Laminar burning velocity is an important combustion parameter, but there are only a few data of partially dissociated ammonia are reported. To fill the data gap, the laminar burning velocity was measured at various equivalence ratios and dissociation degrees of ammonia by the constant pressure spherical flame method in this study. Besides, fifteen kinetic models were compared with experimental data, and the model with the best consistency was obtained. The experimental results show that the laminar burning velocity increases monotonically with the increase of the dissociating degree. When ammonia is completely dissociated, the maximum laminar burning velocity increases from 7.9 cm/s to 228 cm/s, and the equivalence ratio corresponding to the peak value also shifts from 1.1 to 1.6. The laminar burning velocity predicted by the model constructed by Stagni is in best agreement with the experimental data. Moreover, data calculated by the five correlations for predicting laminar burning velocity were compared with the numerical data to verify that whether they are suitable for the mixtures with additional nitrogen. The results show that the correlation based on the activation temperature is the most accurate. However, it still has a maximum relative error of ±20% within the calculated range.  相似文献   

6.
J.R. Fan  X.H. Liang  L.H. Chen  K.F. Cen 《Energy》1998,23(12):1051-1055
A numerical model for gas-particle flow dynamics has been combined with an NOx chemistry post-processor to predict the formation of nitric oxide in a three-dimensional, W-shaped boiler furnace burning pulverized fuel. The model includes complex interactions in gas-particle turbulent flow, heat transfer, gaseous chemical reaction, coal combustion, and NOx reaction chemistry. Because fuel nitrogen is released in proportion to burnout of pulverized coal particles, the particles are treated in a Lagrangian framework in order to track burning pulverized coal particles through the gas continuum. The results show capability of the model to describe NOx emissions under different operating conditions for full and partial loads.  相似文献   

7.
Ammonia, as a zero-carbon fuel, is drawing more and more attention. The major challenge of using ammonia as a fuel for the combustion engines lies in its low chemical reactivity, and therefore more fundamental researches on the combustion characteristics of ammonia are required to explore effective ways to burn ammonia in engines. In this study, the laminar burning characteristics of the premixed ammonia/hydrogen/air mixtures are investigated. In the experiment, the laser ignition was used to achieve stable ignition of the ammonia/air mixtures with an equivalence ratio range from 0.7 to 1.4. The propagating flame was recorded with the high-speed shadowgraphy. Three different processing methods were introduced to calculate the laminar burning velocity with a consideration of the flame structure characteristics induced by the laser ignition. The effects of initial pressure (0.1 MPa–0.5 MPa), equivalence ratio (0.7–1.4), hydrogen fraction (0–20%) on the laminar burning velocity were investigated under the initial ambient temperature of 360 K. The state-of-the-art kinetic models were used to calculate the laminar burning velocities in the CHEMKIN-pro software. Both the simulation and experimental results show that the laminar burning velocity of the ammonia mixtures increases at first, reaches the peak around ϕ of 1.1, and then decreases with the equivalence ratio increasing from 0.7 to 1.4. The peak laminar burning velocities of the ammonia mixture are lower than 9 cm/s and are remarkably lower than those of hydrocarbon fuels. The laminar burning velocity of the ammonia mixture decreases with the increase of the initial ambient pressure, and it can be drastically speeded up with the addition of hydrogen. While the models except for those by Miller and Bian can give reasonable predictions compared to the experimental results for the equivalence ratio from 0.7 to 1.1 in the ammonia (80%)/hydrogen (20%)/air mixtures, all the kinetic models overpredict the experiments for the richer mixtures, indicating further work necessary in this respect.  相似文献   

8.
Rapid compression machines (RCMs) are widely used to acquire experimental insights into fuel autoignition and pollutant formation chemistry, especially at conditions relevant to current and future combustion technologies. RCM studies emphasize important experimental regimes, characterized by low- to intermediate-temperatures (600–1200 K) and moderate to high pressures (5–80 bar). At these conditions, which are directly relevant to modern combustion schemes including low temperature combustion (LTC) for internal combustion engines and dry low emissions (DLE) for gas turbine engines, combustion chemistry exhibits complex and experimentally challenging behaviors such as the chemistry attributed to cool flame behavior and the negative temperature coefficient regime. Challenges for studying this regime include that experimental observations can be more sensitive to coupled physical-chemical processes leading to phenomena such as mixed deflagrative/autoignitive combustion. Experimental strategies which leverage the strengths of RCMs have been developed in recent years to make RCMs particularly well suited for elucidating LTC and DLE chemistry, as well as convolved physical-chemical processes.Specifically, this work presents a review of experimental and computational efforts applying RCMs to study autoignition phenomena, and the insights gained through these efforts. A brief history of RCM development is presented towards the steady improvement in design, characterization, instrumentation and data analysis. Novel experimental approaches and measurement techniques, coordinated with computational methods are described which have expanded the utility of RCMs beyond empirical studies of explosion limits to increasingly detailed understanding of autoignition chemistry and the role of physical-chemical interactions. Fundamental insight into the autoignition chemistry of specific fuels is described, demonstrating the extent of knowledge of low-temperature chemistry derived from RCM studies, from simple hydrocarbons to multi-component blends and full-boiling range fuels. Emerging needs and further opportunities are suggested, including investigations of under-explored fuels and the implementation of increasingly higher fidelity diagnostics.  相似文献   

9.
Chemical-kinetic combustion mechanisms for hydrogen-oxygen-nitrogen systems, motivated originally by concerns about NOx emissions during hydrogen burning, have recently acquired renewed interest as a result of the possibility of employing ammonia-hydrogen mixtures in gas turbines and reciprocating engines as drop-in fuel to replace the use of natural gas. Specifically, this is of relevance to the implementation of engineering approaches for economical power generation with carbon sequestration or to large-scale energy-storage schemes, based on hydrogen or efficient hydrogen carriers such as ammonia. Because computational investigations are facilitated by short mechanisms (since the use of large mechanisms is often prohibitively expensive in reactive flow simulations), in response to the original concerns, a short nitrogen mechanism was developed in San Diego in the 1990s (not updated since 2004), without consideration of ammonia combustion. In view of the renewed interest in this topic, that mechanism has now been expanded to encompass 60 elementary steps among 19 reactive chemical species, including ammonia burning and NOx production, as reported herein, greatly improving predictions. With particular attention to high reactant temperatures and high-pressure conditions, relevant to industrial applications, it is shown that the present short mechanism retains satisfactory accuracy, exhibiting deviations that in most cases are within acceptable bounds (±20%). The revisions maintain the shortness of the original mechanism, adding only one more reactive species and six more elementary steps (while updating values of rate parameters of nine other steps, on the basis of newly available information). In addition, the short mechanism is applied herein to the analysis of fundamental combustion properties of ammonia/hydrogen/nitrogen-air laminar premixed flames, at unstrained and strained conditions, for comparison with methane-air flames as a reference gas-turbine fuel. It is found by comparing carbon-free and hydrocarbon laminar flames that these reactive mixtures, even if characterized by nearly identical adiabatic flame temperature and laminar flame speeds, nevertheless exhibit substantially different resistance to strain, with the ammonia/hydrogen flames exceeding the strain limit of methane flames by a factor of 5.  相似文献   

10.
Ammonia is a carbon-free fuel that has the potential to meet increasing energy demand and to reduce CO2 emissions. In the present work, the characteristics of pollutant emissions in ammonia premixed laminar flames are investigated using one-dimensional simulations, and heat release rate (HRR) surrogates for ammonia combustion are proposed. Both atmospheric and high-pressure conditions were considered, and four representative mechanisms for ammonia combustion were employed. It is shown that the total emission of NO and NH3 achieves a minimum around an equivalence ratio (?) of 1.1 under atmospheric conditions, and there is no noticeable emission of NO and NH3 for ? = 1.1 ~ 1.5 under high-pressure conditions. Three HRR surrogates, [NH3][OH], [NH2][O], and [NH2][H], were proposed based on the analysis of HRR and elementary reaction profiles. The performance of HRR surrogates was found to vary with equivalence ratios. For example, with the Miller mechanism, [NH3][OH], [NH2][O], and [NH2][H] have the best performance under atmospheric conditions at ? = 1.15, 0.95 and 1.05, respectively, and under high-pressure conditions at ? = 1.11, 0.87 and 0.96, respectively. Similar conclusions can also be drawn with other mechanisms. These findings provide valuable insights into emission control and flame identification of ammonia combustion.  相似文献   

11.
汽油机怠速工况下HC和CO排放机理的实验研究   总被引:5,自引:0,他引:5  
本文系统地研究了汽油机怠速工况下排气中HC和CO生成的基本规律,重点探讨了燃烧过程与HC、CO排放的内在关系。燃烧过程所考虑的因素主要有燃烧完善程度(用累积放热百分比表示),燃烧速率和着火时刻。试验发现燃烧速率对排放的影响较小。在空燃比较高(大于13)的情况下,采用适当的废气再循环可显著降低排气中HC的生成量,这为改善现代汽油机怠速工况下的排放水平提供了有效的途径。  相似文献   

12.
The potential utilization of ammonia as a carbon-free fuel under oxygen (O2)-enriched condition is demonstrated, suggesting its practically appropriate burning conditions by measuring and predicting the combustion characteristics of outwardly-propagating spherical O2-enriched NH3/air premixed flames at normal temperature and pressure. Measured and computed laminar burning velocities and predicted flame structure exhibit that the O2-enriched ammonia/air flames become thinner and propagate faster with O2 enrichment. Observed flame morphologies and measured and computed Markstein numbers reveal that all the present O2-enriched flames are stable in terms of the flamefront cellular instability due to preferential diffusion and the effects of O2 enrichment on the instability are negligible. Volume-based 35–40% O2 in the nonfuel mixtures demonstrates the proper burning intensity for practical applications, comparable to the typical hydrocarbon/air flames. In the present flame configuration, however, local nitrogen oxides emissions are found to be high, which should be substantially reduced in the practical systems.  相似文献   

13.
The combustion of ammonia(NH3)has attracted wide interest in fuel vehicle engines,marine engines,and power generators to mitigate carbon dioxide emissions.Unfortunately,the relatively low laminar flame speed presents a technical barrier for this renewable fuel to be used in practice.This work is concerned with numerical examining the effects of elevating inlet temperature on the laminar burning velocity of NH3/air flames with various contents of dimethyl ether(DME)using ID freely propagating flame calculations,and to shed light on the flame enhancement mechanism.For this,the mechanism is first validated by comparing the numerical predictions with experimental data.Results show that increasing the inlet temperature has a positive effect on the laminar burning velocity of pure NH3/DME/air flames.It is revealed that elevating inlet temperature contributes to a higher adiabatic flame temperature,which is beneficial to the overall chemical reaction rate.Furthermore,the thermal diffusivity of the binary mixture is observed to increase substantially as well.Further kinetic and sensitivities analyses reveal that the inlet temperature has a minimal effect on the reaction pathway,leading to the relative importance of the dominant chain branching over terminating reaction steps to be varied negligibly.The present work confirms that the flame speed enhancement with increasing inlet temperature is primarily the synergetic result of the thermal and diffusion effects,rather than the chemical effect.  相似文献   

14.
F-T柴油对直喷式柴油机燃烧和排放的影响   总被引:7,自引:0,他引:7  
在两种不同供油提前角下研究了燃用F-T柴油对直喷式柴油机燃烧和排放特性的影响,结果表明:发动机不做任何调整时,与0号柴油相比,燃用F-T柴油的滞燃期较短,预混燃烧放热峰值较低,扩散燃烧放热峰值较高,最高燃烧压力和最大压力升高率较低,燃油消耗率和热效率都得到了改善,HC、CO、NOx和碳烟排放同时降低。当供油提前角推迟3℃A时,燃用F-T柴油燃烧持续期明显缩短,预混燃烧放热峰值、最高燃烧压力和最大压力升高率进一步降低,扩散燃烧放热峰值略有升高,燃油消耗率变化不大,NOx排放进一步降低, HC、CO和碳烟略有增加,其中HC排放与原柴油机相当,而CO和碳烟仍远低于原柴油机。  相似文献   

15.
Effects of Fischer-Tropsch (F-T) diesel fuel on the combustion and emission characteristics of a single-cylinder direct injection diesel engine under different fuel delivery advance angles were investigated. The experimental results show that F-T diesel fuel exhibits shorter ignition delay, lower peak values of premixed burning rate, lower combustion pressure and pressure rise rate, and higher peak value of diffusion burning rate than conventional diesel fuel when the engine remains unmodified. In addition, the unmodified engine with F-T diesel fuel has lower brake specific fuel consumption and higher effective thermal efficiency, and presents lower HC, CO, NOx and smoke emissions than conventional diesel fuel. When fuel delivery advance angle is retarded by 3 crank angle degrees, the combustion duration is obviously shortened; the peak values of premixed burning rate, the combustion pressure and pressure rise rate are further reduced; and the peak value of diffusion burning rate is further increased for F-T diesel fuel operation. Moreover, the retardation of fuel delivery advance angle results in a further significant reduction in NOx emissions with no penalty on specific fuel consumption and with much less penalty on HC, CO and smoke emissions.  相似文献   

16.
During the last years a great effort has been made to reduce pollutant emissions from direct injection (DI) diesel engines. Towards this, engineers have proposed various solutions, one of which is the use of gaseous fuels as a supplement for liquid diesel fuel. These engines, which use conventional diesel fuel and gaseous fuel, are referred to as dual fuel engines. The main aspiration from the usage of dual fuel (liquid and gaseous one) combustion systems is mainly to reduce particulate emissions and nitrogen oxides.One of the gaseous fuels used is natural gas, which has a relatively high auto ignition temperature and moreover is an economical and clean burning fuel. The high auto ignition temperature of natural gas is a serious advantage against other gaseous fuels since the compression ratio of most conventional DI diesel engines can be maintained. Moreover the combustion of natural gas produces practically no particulates since natural gas contains less dissolved impurities (e.g. sulfur compounds).The present contribution is mainly concerned, with an experimental investigation of the characteristics of dual fuel operation when liquid diesel is partially replaced with natural gas under ambient intake temperature in a DI diesel engine. Results are given revealing the effect of liquid fuel percentage replacement by natural gas on engine performance and emissions.  相似文献   

17.
This paper proposes the use of hydrogen and ammonia as possible fuels for power generators and to do so the combustion is modelled by using different types of fuels which are; hydrogen, gasoline, diesel, ethanol, methanol, propane, butane and natural gas to see the effects of these fuel sources on combustion. The main aim of using a clean fuel is to decrease the greenhouse emissions, and by looking at the results, the reduction in CO2 emissions shows that blending hydrogen and ammonia will result in a reduction for the deleterious emissions occurring after combustion. The reason behind using a dual fueled system is to make use of the secondary fuel source as a combustion promoter to help increase the low flame temperatures of ammonia that causes it not to ignite when used solely. In the modelling of combustion the maximum power output is set to 3.65 kW as this is the maximum power output for the power generator used in the experimental studies. In the studies the increase of clean fuel percentage in the fuel blend cause a reduction in the performance measures as expected with the lower energy density and lower heating values that ammonia offers but the reduction in CO2 and NOx emissions makes it a fuel source worth using with a combustion promoter.  相似文献   

18.
In order to evaluate the potential of partial ammonia substitution to improve the safety of hydrogen use and the effects on the performance of internal combustion engines, the propagation, development of surface cellular instability and nitrogen oxide (NOx) and nitrous oxide (N2O) emissions of spark-ignited spherical laminar premixed ammonia/hydrogen/air flames were studied experimentally and computationally. With ammonia being the substituent, the fundamental unstretched laminar burning velocities and Markstein numbers, the propensity of cell formation and the associated flame structure were determined. Results show substantial reduction of laminar burning velocities with ammonia substitution in hydrogen/air flames, similar to hydrocarbon (e.g., methane with a similar molecular weight to ammonia) substitution. In all cases, ammonia substitution enhances the NOx and N2O formation. At fuel-rich conditions, however, the amount of NOx emissions increases and then decreases with ammonia substitution and the increased amount of NOx and N2O emissions with ammonia substitution is much lower than that under fuel-lean conditions. These observations support the potential of ammonia as a carbon-free, clean additive for improving the safety of hydrogen use with low NOx and N2O emissions in fuel-rich hydrogen/air flames. The potential of ammonia as a suppressant of both preferential-diffusional and hydrodynamic cellular instabilities in hydrogen/air flames was also found particularly for fuel-lean conditions, different from methane substitution. However, it should be noted that the use of ammonia also imposes considerable technological challenges and public concerns, particularly those associated with toxicity and the specific properties such as high reactivity with container materials and water, which should be completely resolved.  相似文献   

19.
Cool flames play a critical role in ignition timing, burning rate, burning limits, engine knocking, and emissions in conventional and advanced combustion engines. This paper provides an overview of the recent progress in experimental and computational studies of cool flames. First, a brief review of low-temperature chemistry and classical studies of cool flames is presented. Next, the recent experimental and computational findings of cool flames in microchannels, microgravity droplet combustion, counterflow flames, and turbulent combustion environments are reviewed. The flammability diagrams of different low-temperature flames and their relations to hot flames in premixed and nonpremixed systems are discussed. The impact of cool flames on turbulent combustion and knock formation is also highlighted. Finally, future avenues in cool flame research, including the use of cool flames as a new platform for low-temperature kinetic model validation, are presented. It is concluded that the understanding and control of low-temperature combustion is critical for the development of future advanced engines and new fuels.  相似文献   

20.
This computational study investigates the equivalence ratio and hydrogen volume fraction effect on the ultra-lean burning of the syngas-fueled homogeneous charge compression ignition (HCCI) engine. In this research, low calorific syngas, composed of different compositions of H2, CO, and CO2, is used as a fuel in the HCCI engine that is operated under an overly lean air-fuel mixture. ANSYS Forte CFD package with Gri-Mech 3.0 chemical kinetics was used to analyze the in-cylinder combustion phenomena, and the simulation results were validated with experimental tests in the form of in-cylinder pressure and heat release rate at different equivalence ratios.The results indicate that changing the equivalence ratio produces a negligible change in combustion phasing, while it positively impacts the combustion and thermal efficiency of this syngas-fueled HCCI engine under lean conditions due to the high burning rate in the squish region. Moreover, an increased equivalence ratio increases MPRR due to the rich mixture combustion. The results also represent that the high-volume fraction of H2 in syngas fuel causes an advanced burning phase, improves the combustion performance of the HCCI engine at all equivalence ratio conditions, and causes slightly high NOx emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号