首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ammonia borane (AB) is considered to be a promising solid hydrogen carrier. In this work, poly(N-vinyl-2-pyrrolidone) (PVP)-protected platinum nanoparticles are supported on γ-methacryloxypropyltrimethoxysilane (γ-MPS) modified silica spheres (Pt-PVP/SiO2(M)), which are firstly used as highly efficient catalysts for hydrolysis of AB. Platinum nanoparticles possess a tiny size of 2–3 nm and are uniformly dispersed over modified silica spheres. Pt-PVP/SiO2(M) catalysts with a Pt loading amount of 1.30 wt% show the highest catalytic activity with a turnover frequency (TOF) value of 371 molH2 molPt?1 min?1 (866 molH2 molPt?1 min?1 corrected for the surface atoms) at 25 °C. The activation energy is calculated to be 46.2 kJ/mol. Furthermore, owing to the synergistic effect between the modifier of silica spheres and the capping agent of metal nanoparticles, Pt-PVP/SiO2(M) catalysts have a higher loading amount (8.7 and 6.5 times) and TOF value (4.8 and 5.5 times) than the counterparts prepared without γ-MPS and PVP, respectively.  相似文献   

2.
We report nanoporous Ni, Ni–Fe, and Ni–Pt as catalysts for hydrogen generation from hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB). The Ni and Ni–Fe nanoparticles with diameters of 20–25 nm were synthesized by a colloidal method in starch-containing aqueous solution. They exhibited considerable in situ catalytic performance but severely lost activity after separating from the reaction solution. Nanoporous Ni1−xPtx (x = 0.01, 0.08 and 0.19) with particle size below 5 nm was prepared from the isolated Ni nanoparticles through a replacement reaction. After centrifugation, drying, washing, and annealing, the obtained nanoporous Ni–Pt could attain remarkable activity, high hydrogen generation rate and efficiency, and low activation energy.  相似文献   

3.
It reports the preparation and characterization of tungsten(VI) oxide supported rhodium(0) nanoparticles (Rh0/WO3 NPs) being used as catalysts in releasing H2 from dimethylamine borane (DMAB). The reducible nature of WO3 plays a significant role in the catalytic efficiency of rhodium(0) nanoparticles in the dehydrogenation of DMAB. The Rh0/WO3 NPs were in-situ generated from the reduction of Rh2+ ions on the surface of WO3 during the catalytic dehydrogenation of dimethylamine borane in toluene and isolated from the reaction solution after the dehydrogenation to be characterized by using SEM, TEM, XPS, ATR-IR and XRD. The results reveal the formation of Rh0 NPs with a mean particle size of 1.92 ± 0.34 nm dispersed on the surface of tungsten(VI) oxide. Rh0/WO3 NPs are found to be very active catalyst releasing 1.0 equiv. H2 per mole of dimethylamine borane under ambient conditions. Among the various WO3 supported Rh0 NPs with different metal loadings, the sample with 0.1% wt. Rh provide the record catalytic activity (TOF = 2816 h?1) which is one of the highest value ever reported for rhodium-based catalysts in H2 generation from DMAB at 60.0 ± 0.5 °C. Rh0/WO3 NPs were also reusable catalyst in dehydrogenation of DMAB retaining 55% of their initial catalytic activity in the 3rd run of the dehydrogenation reaction. Control experiments were performed at various catalyst concentrations and temperatures to investigate the kinetics of dehydrogenation and to calculate the activation parameters for the reaction.  相似文献   

4.
Herein, ternary metal phosphides NiCoP nanoparticles supported on porous hexagonal boron nitride (h-BN) was fabricated via hydrothermal-phosphorization strategy. The as-prepared Ni0.8Co1.2P@h-BN exhibited excellent catalytic performance for the hydrogen generation from ammonia borane (AB) hydrolysis, with an initial turnover frequency of 86.5 mol(H2) mol(Ni0.8Co1.2P) −1 min−1 at 298 K. The experimental outcome can be attributed to the synergistic effect between Ni, Co and P, as well as the strong metal-support interaction between NiCoP and h-BN. This study presents a new paradigm for supporting transition metal phosphides, and provides a new avenue to develop high performance and low cost non noble metal catalysts for hydrolysis of AB.  相似文献   

5.
Ruthenium(0) nanoparticles supported on the surface of titania nanospheres (Ru(0)/TiO2) were in situ generated from the reduction of ruthenium(III) ions impregnated on nanotitania during the hydrolysis of ammonia borane. They were isolated from the reaction solution by centrifugation and characterized by a combination of advanced analytical techniques. The results reveal that highly dispersed ruthenium(0) nanoparticles of size in the range 1.5–3.3 nm were formed on the surface of titania nanospheres. Ru(0)/TiO2 show high catalytic activity in hydrogen generation from the hydrolysis of ammonia borane with a turnover frequency value up to 241 min−1 at 25.0 ± 0.1 °C. They provide unprecedented catalytic lifetime measured by total turnover number (TTO = 71,500) in hydrogen generation from the hydrolysis of ammonia borane at 25.0 ± 0.1 °C. The report also includes the results of kinetic study on the catalytic hydrolysis of ammonia borane depending on the temperature to determine the activation energy of the reaction (Ea = 70 ± 2 kJ/mol) and the catalyst concentration to establish the rate law of the reaction.  相似文献   

6.
Resin catalysts have the advantage of having various properties and long lifetime due to their ability to be regenerated easily, which makes them attractive supports. In this paper, a comparative study was conducted to optimize the dehydrogenation reaction condition using two different types of support materials: alumina (Al2O3), and Amberlyst-15 and to improve the catalytic activity as well as preparing an efficient and low-cost system for practical application, ruthenium metal catalyst was incorporated on Amberlyst-15 resin (a sulfonic acid type based upon a styrene-divinylbenzene copolymer) to release H2 via hydrolytic dehydrogenation of ammonia borane. Using ruthenium (Ru) catalysts based on Amberlyst-15 support material and comparing the results with Al2O3 as the common supporting material is considered to be studied for the first time. The effect of temperature (20–50 °C), the initial ammonia borane concentration (0.05–0.5 %wt), and catalyst amount (0.2–0.5 g) on the produced H2 yield was also investigated. Ru@Amberlyst-15 nanoparticle was discovered to be an effective catalyst for hydrogen evolution via the hydrolysis of ammonia borane with a turnover frequency value (TOF) of 343.3 min?1, while Ru@Al2O3 yielded a TOF of 87.5 min?1 at the room temperature. Therefore, it can be concluded that the Amberlyst-15 supporting effect on ruthenium metal leads an increase in the hydrogen production rate.  相似文献   

7.
It reviews the available reports on the preparation and use of magnetically separable transition metal nanoparticles (TMNs) as reusable catalysts for the hydrolytic dehydrogenation of ammonia borane (AB). After a short introduction, the review starts with the papers on the employment of intrinsically magnetic TMNs as catalysts for releasing H2 gas from AB, which includes colloidal nanoparticles of intrinsically magnetic metals, TMNs in combination with materials having large surface area, and multimetallic composites containing at least one intrinsically magnetic metal together with an additional component usually acting as support or stabilizer. This is followed by a section reviewing the papers on core-shell multimetallic nanoparticles with one intrinsically magnetic metal in either core or shell used for catalyzing the hydrolysis of AB. It follows the review of papers on TMNs supported on Fe3O4, CoFe2O4, or Co3O4 forming magnetically separable catalysts for the same reaction. Then, a short section reviews the available reports on metal nanoparticles supported on carbon-coated iron. The last section gives a summary list of conclusions.  相似文献   

8.
We report the preparation of Ni3B and carbon-supported Ni3B (denoted as Ni3B/C) nanoparticles, and their catalytic performance for hydrogen generation from hydrolytic dehydrogenation of ammonia borane (NH3BH3, AB). Ni3B and Ni3B/C were prepared via a chemical reduction and crystallization in tetraethylene glycol solution. The obtained Ni3B catalysts are in well-defined crystalline state and Ni3B/C catalysts have a high dispersion in the carbon. The hydrogen generation measurement shows that the carbon-supported Ni3B presents enhanced catalyst activity during hydrolytic dehydrogenation of AB. Among the as-prepared Ni3B/C catalysts, Ni3B/C with 34.25 wt% Ni3B loading displays the best catalytic activity, delivering a high hydrogen release rate of 1168 mL min−1 g−1 and the lower activation energy of 46.27 kJ mol−1. The kinetic results show that the hydrolysis is a first-order reaction in catalyst concentration, while it is a zero-order in AB concentration. Furthermore, the Ni3B/C is a recyclable catalyst under mild reaction conditions, indicating that the carbon-supported Ni3B is a promising catalyst for AB hydrolytic dehydrogenation.  相似文献   

9.
Hydrogen evolution from ammonia borane (AB) hydrolysis is of great importance considering the ever-increasing demand for green and sustainable energy. However, the development of a facile and efficient strategy to construct high-performance catalysts remains a grand challenge. Herein, we report an amino-group and space-confinement assisted strategy to fabricate Rh nanoparticles (NPs) using amino-functionalized metal-organic-frameworks (UiO-66-NH2) as a NP matrix (Rh/UiO-66-NH2). Owing to the coordination effect of amino-group and space-confinement of UiO-66-NH2, small and well-distributed Rh NPs with a diameter of 3.38 nm are successfully achieved, which can be served as efficient catalysts for AB hydrolysis at room temperature. The maximum turnover frequency of 876.7 min?1 is obtained by using the Rh/UiO-66-NH2 with an optimal Rh loading of 4.38 wt% and AB concentration of 0.2 M at 25 °C, outperforming most of the previously developed Rh-based catalysts. The catalyst is also stable in repetitive cycles for five times. The high performance of this catalyst must be ascribed to the structural properties of UiO-66-NH2, which enable the formation of small and well-dispersed Rh NPs with abundant accessible active sites. This study provides a simple and efficient method to significantly enhance the catalytic performance of Rh for AB hydrolysis.  相似文献   

10.
This article reports the preparation and employment of rhodium (0) nanoparticles (Rh0NPs) on the surface of magnetite nanospheres, denoted as Rh0@Fe3O4, as magnetically isolable nanocatalyst in the methanolysis of ammonia borane (MAB). The monodispersed Fe3O4 nanospheres are fabricated by a simple technique and used as nanosupport for Rh0NPs which are well stabilized and homogeneously distributed on the surface of nanospheres with a mean particle size of 2.8 ± 0.5 nm. The as-synthesized Rh0@Fe3O4 has a remarkable TOF value of 184 min−1 in the MAB to produce H2 gas in RT. Most of all, Rh0@Fe3O4 nanocatalyst can be reused, evolving 3.0 mol of H2 gas for a mole of AB, keeping 100% of its initial activity even in the fourth reuse of MAB at 25 °C. Recovery of the Rh0@Fe3O4 nanocatalyst can be accomplished by simply approaching an external magnet, which eliminates many laborious catalyst removal steps in catalytic reactions. Reported are the outcomes of kinetic investigation, done by altering the concentration of substrate and catalyst together with temperature. Kinetic studies reveal that the catalytic MAB shows dependence on the concentration of reactants and temperature.  相似文献   

11.
Hydrogen generation from the hydrolysis of ammonia borane (AB) over heterogeneous catalysts is essential for practical applications. Herein, efficient hydrogen evolution from AB hydrolysis over the carbon-supported Rh nanoparticles synthesized with sodium citrate (Rh/C-SC) was achieved at 25 °C. The turnover frequency value of Rh/C-SC was 336 mol H2 (molRh min)?1, whereas that of Rh/C catalyst only yielded a value of 134 mol H2 (molRh min)?1. The improvement of the catalytic performance of Rh/C-SC catalyst could be attributed to the small Rh particles with highly active surface areas, which were prepared by using sodium citrate as the stabilizing agent. This result indicates that sodium citrate can be applied as a useful stabilizing agent for synthesizing active metal nanoparticles, thus highly promoting the practical application of AB system for fuel cells.  相似文献   

12.
We report on CoMoB nanoparticles supported on foam Ni as catalysts for hydrogen generation from hydrolysis of ammonia borane (NH3BH3) solution. The CoMoB/foam Ni catalysts with different molar ratios of Co2+and MoO42− were synthesized via the electroless-deposition technique at ambient temperature. In order to analyze the phase composition, chemical composition, microstructure, and electron bonding structure of the as-prepared samples, powder X–ray diffraction (XRD), inductively coupled plasma-mass spectroscopy (ICP-MS), scanning electron microscopy (SEM), atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS) were used. The results showed that CoMoB nanoparticles were variously dispersed on the surface of the foam Ni and the catalytic activity correlated with the molar ratio of Co2+ and MoO42−. The highest hydrogen generation rate was 5331.0 mL min−1 gcat−1 at 298 K, and the activation energy was calculated to be 45.5 kJ mol−1 toward the hydrolysis of NH3BH3 solution. The better catalytic activity was largely attributed to the smaller particle size, higher surface roughness and the novel three-dimensional cone-like architectures of the obtained samples. The kinetic results show that the hydrolysis of NH3BH3 is a first-order reaction in catalyst concentration. In addition, the reusability experiment exhibited that the catalytic activity was reduced after 5 cycles and the reason of the decay was also investigated.  相似文献   

13.
We report the preparation of an ammonia borane hydrolysis catalyst for use in hydrogen production by dispersing Rh nanoparticles on a nitrogen-doped carbon (NPC) support. The resulting Rh/NPC catalyst had a measured turnover frequency of 473.5 min?1, higher than that of many previously reported Rh-based catalysts. This catalyst could also be reused eight times. The large surface area and abundant nitrogen-functional species of NPCs facilitate dispersion of Rh nanoparticles on their surface, providing numerous catalytically active sites for ammonia borane hydrolysis, thereby leading to high catalytic activity. This study demonstrates that NPC support can be used to prepare highly active catalysts.  相似文献   

14.
Ammonia borane (AB) hydrolysis is a comparative strategy for developing the sustainable hydrogen economy. Considering the hydrolysis cannot occur kinetically at low temperature, a suitable catalyst is indispensable. In this work, the dispersed ruthenium nanoparticles are stabilized on hexagonal boron nitride (h-BN) via an adsorption-in situ reduction procedure. Various characterization techniques are adopted for elucidating the structure-performance relationship of the obtained catalysts for the hydrolytic dehydrogenation of AB. In the presence of the resultant Ru/h-BN catalysts, the corresponding turnover frequency (1177.5 min?1) in alkaline solution at 303 K and the apparent activation energy (24.1 kJ mol?1) are superior to most literature previously reported. Our work provides a facile fabrication method for metal-based catalysts, which are highly promising in chemical storage material hydrolysis.  相似文献   

15.
Rh3+ ions are first impregnated on Group 4 metal oxides (TiO2, ZrO2, HfO2) in aqueous solution and, then reduced with aqueous solution of NaBH4 to form rhodium(0) nanoparticles (NPs) on the oxide surface. The analyses reveal that Rh(0) NPs are highly dispersed on the surface of TiO2, ZrO2, HfO2. Rh0/MO2 (M: Ti, Zr, Hf) NPs have high activity and reusability in releasing H2 from the hydrolysis of ammonia borane with an initial turnover frequency of 643, 198, and 188 min−1, respectively, at 25.0 ± 0.1 °C. The reusability of Rh0/ZrO2 and Rh0/HfO2 catalysts is higher than that of the Rh0/TiO2 catalyst.  相似文献   

16.
Effective catalysts for hydrogen generation from ammonia borane (AB) hydrolysis should be developed for the versatile applications of hydrogen. In this study, ruthenium nanoparticles (NPs) supported on alumina nanofibers (Ru/Al2O3-NFs) were synthesized by reducing the Ru(Ш) ions impregnated on Al2O3-NFs during AB hydrolysis. Results showed that the Ru NPs with an average size of 2.9 nm were uniformly dispersed on the Al2O3-NFs support. The as-synthesized Ru/Al2O3-NFs exhibited a high turnover frequency of 327 mol H2 (mol Ru min)?1 and an activation energy of 36.1 kJ mol?1 for AB hydrolysis at 25 °C. Kinetic studies showed that the AB hydrolysis catalyzed by Ru/Al2O3-NFs was a first-order reaction with regard to the Ru concentration and a zero-order reaction with respect to the AB concentration. The present work reveals that Ru/Al2O3-NFs show promise as a catalyst in developing a highly efficient hydrogen storage system for fuel cell applications.  相似文献   

17.
From the viewpoint of tailoring the atomic and nanoscale structures of semiconductors to enhance the solar-to-hydrogen energy conversion, we employed an in-situ gas template-assisted co-polymerization route, where melamine and 2,4,6-triaminopyrimidine were co-monomers and NH4Cl was the in-situ gas template, to synthesize porous broad-spectrum light-responsive carbon nitride nanosheet (termed as CNN) species with increased π-electron availability. Then we developed CNN-supported Co and Ni nanoparticles (NPs) for catalytic hydrogen generation from aqueous ammonia borane (NH3BH3) under light irradiation (λ ≥ 420 nm) at room temperature. Though all the Co-based catalysts had the similar activities with total turnover frequency (TOF) values of 37.5–44.1 min−1 in the dark, they exhibited significantly different and enhanced photocatalytic activities. Remarkably, the optimized catalyst had a total TOF value of 123.2 min−1, exceeding the values of reported non-noble metal catalysts. Moreover, the porous CNN species possessed the C-substitution for N, tunable narrow bandgaps of 0.71–2.34 eV and efficient separation of photogenerated charge carriers. This resulted in the enriched electron density of metal NPs and the apparent quantum yield of 66.9% at 420 nm.  相似文献   

18.
A novel multifunctional catalytic system has been developed for efficient hydrogen generation through the hydrolysis of ammonia borane. This system combines Pd NPs with acid sites and amines, which are both task-specific functionalities able to destabilize the N → B dative bond. The acidity of the support (zeolites of different structure and SiO2/Al2O3 ratio) used to disperse the Pd NPs causes an increase in the hydrogen production rate. However, the positive effect of incorporating p-phenylenediamine in the catalyst is much more pronounced, causing a two-fold increase in the activity of the catalyst. The combined effect of the different functionalities yields excellent performance in the hydrolysis of ammonia borane, greatly enhancing the activity of the metal-based catalyst and reducing the activation energy of the catalyzed reaction.  相似文献   

19.
Hydrolysis of ammonia borane provides a reliable pathway for hydrogen production, while suitable catalysts are indispensable to make the hydrolysis reaction reach a considerable rate. In the present work, a series of TiO2-supported RuCo catalysts have been fabricated by coprecipitation and subsequent reduction of Ru3+ and Co2+ on the surface of TiO2 nanoparticles. Transmission electron microscopy and elemental mapping have verified the good distribution of metal species in the catalysts. The fabricated catalysts have shown excellent performance for catalyzing ammonia borane hydrolysis, especially in alkaline solutions with 0.5 M NaOH. For Ru1Co9/TiO2 in which Ru/Co molar ratio is 1:9, the active energy of catalyzed ammonia borane hydrolysis is 33.25 kJ/mol, and a turnover frequency based on Ru as high as 1408 molH2/(molRu·min) is obtained at 25 °C. Moreover, when different types of TiO2 substrates are used, anatase TiO2-supported catalysts show better catalytic activity than their counterparts with rutile TiO2 as substrate or mixture of anatase and rutile TiO2 as substrate.  相似文献   

20.
Ammonia borane (AB, NH3BH3) hydrolysis is an effective way to safely generate hydrogen. However, a suitable catalyst is indispensable because the hydrolytic reaction cannot take place kinetically at room temperature. In this work, CuNi alloy nanoparticles are immobilized on porous graphitic carbon nitride (g-C3N4) with a facile adsorption-chemical reduction method. Benefiting from the hierarchical porous structure of the support, the interesting alloy effect of Cu and Ni, as well as the synergistic effect between g-C3N4 and the CuNi alloys, the optimal Cu0·7Ni0.3/g-C3N4 catalyst displays excellent catalytic performance in AB hydrolysis, such as high turnover frequency (2.08 min−1, at 303 K), low apparent activation energy (23.58 kJ mol−1), and satisfactory durability. The results verify that the optimal catalyst has particular potential in hydrogen energy utilization due to the advantages such as the facile preparation procedure, low cost and excellent catalytic behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号