首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The rational design of catalysts with low cost, high efficient and robust stability toward oxygen evolution reaction (OER) is greatly desired but remains a formidable challenge. In this work, a one-pot, spatially confined strategy was reported to fabricate ultrathin NiFe layered double hydroxide (NiFe-LDH) nanosheets interconnected by ultrafine, strong carbon nanofibers (CNFs) network. The as-fabricated NiFe-LDH/CNFs catalyst exhibits enhanced OER catalytic activity in terms of low overpotential of 230 mV to obtain an OER current density of 10 mA cm?2 and very small Tafel slope of 34 mV dec?1, outperforming pure NiFe-LDH nanosheets assembly, commercial RuO2, and most non-noble metal catalysts ever reported. It also delivers an excellent structural and electrocatalytic stability upon the long-term OER operation at a large current of 30 mA cm?2 for 40 h. Furthermore, the cell assembled by using NiFe-LDH/CNFs and commercial Pt/C as anode (+) and cathode (?) ((+)NiFe-LDH/CNFs||Pt/C(?)) only requires a potential of 1.50 V to deliver the water splitting current of 10 mA cm?2, 130 mV lower than that of (+)RuO2||Pt/C(?) couple, demonstrating great potential for applications in cost-efficient water splitting devices.  相似文献   

2.
In realm of renewable energy, development of an efficient and durable electrocatalyst for H2 production through electrochemical hydrogen evolution reaction (HER) is indispensable. Herein, we demonstrate a simple preparation of carbon-supported nanoporous Pd with surface coated Pt (CS–PdPt) by a simple galvanic replacement reaction (GRR). The phase purity and porosity have been confirmed by XRD, HRTEM, and N2 sorption techniques. As HER electrocatalyst, CS-PdPt showed a low overpotential of 26 mV in 0.5 M H2SO4 at current density of 10 mA cm−2, which is lower than the commercial Pt/C electrode. The CS-PdPt catalyst exhibits an overpotential of 46 mV in 1 M KOH, and 50 mV in neutral buffer (1 M PBS) at 10 mA cm−2. The CS-PdPt furnished with small Tafel values of 33, 88, and 107 mV dec−1 in acidic, alkaline, and neutral medium, respectively. Accelerated durability test at 100 mV s−1 for 1000 cycles demonstrated a negligible change in HER activity.  相似文献   

3.
Developing non-precious metal catalysts for oxygen reduction reaction (ORR) and hydrogen evolution reaction (HER) is crucial for proton exchange membrane fuel cell (PEMFC), metal-air batteries and water splitting. Here, we report a in-situ simple approach to synthesize ultra-small sized transition metal carbides (TMCs) nanoparticles coupled with nitrogen-doped carbon hybrids (TMCs/NC, including WC/NC, V8C7/NC and Mo2C/NC). The TMCs/NC exhibit excellent ORR and HER performances in acidic electrolyte as bi-functional catalysts. The potential of WC/NC at the current density of 3.0 mA cm?2 for ORR is 0.814 V (vs. reversible hydrogen electrode (RHE)), which is very close to Pt/C (0.827 V), making it one of the best TMCs based ORR catalysts in acidic electrolyte. Besides, the TMCs/NC exhibit excellent performances toward HER, the Mo2C/NC only need an overpotential of 80 mV to drive the current density of 10 mA cm?2, which is very close to Pt/C (37 mV), making it the competitive alternative candidate among the reported non-precious metal HER catalysts.  相似文献   

4.
Extremely low content of Ruthenium (Ru) nanoparticles were loaded on the carbon black (Ru/C) via reducing Ru ions with silicon monoxide. The obtained Ru/C nanocomposites exhibit an exciting electrochemical catalytic activity for hydrogen evolution reaction (HER) in the oxygen-free 0.5 M H2SO4 medium. The optical one (Ru/C-2) with a low Ru amount of 2.34% shows higher activity than previously reported Ru-based catalysts. The overpotential at 10 mA cm−2 is 114 mV and the Tafel slope is 67 mV·dec−1. Ru/C-2 catalyst also has good stability. The overpotential that afford the current density of 10 mA cm−2 of 20 wt% Pt/C increased 92 mV while that of Ru/C-2 only increased 50 mV after a 30,000 s chronopotentiometry test. Furthermore, the mass activity of Ru/C-2 catalyst is even better than that of the commercial 20 wt% Pt/C when the overpotential is larger than 0.18 V. This silicon monoxide-mediated strategy may open a new way for the fabrication of high performance electrocatalysts.  相似文献   

5.
Multicomponent electrocatalysts containing carbon supports play a crucial role in influencing the hydrogen and oxygen evolution reactions which enhance the total water splitting. Herein, we report a ternary composite with cobalt ferrite, graphitic carbon nitride, and N-doped graphene quantum dots prepared via hydrothermal technique. The purity of the samples is established by carrying out various characterization methods. The intrinsic characteristics of the obtained materials are investigated by employing electrocatalytic processes in an alkaline media toward hydrogen and oxygen evolution reactions. Cobalt ferrite/graphitic carbon nitride/N doped graphene quantum dots electrocatalyst demonstrates a very low overpotential towards hydrogen evolution reaction of 287 mV at a constant 10 mA cm?2 current density in 1.0 M KOH. Tafel slope and Rct values generated are 94 mV dec?1 and 0.86 cm2, respectively. Oxygen evolution reaction studies reveal an overpotential of 445 mV at 10 mA cm?2 with a Tafel slope of 69 mV dec?1. Finally, the cell potential needed for the cobalt ferrite/graphitic carbon nitride/N doped graphene quantum dots electrode to achieve 10 mA cm?2 in total water splitting is only 2.0 V while displaying long-term stability.  相似文献   

6.
Electrochemical water splitting represents a promising alternative to conventional carbon-based energy sources. The hydrogen evolution reaction (HER) is a key process, still if conducted in alkaline media, its kinetics is slow thus requiring high amount of Pt based catalysts. Extensive research has been focused on reducing Pt utilization by pursuing careful electrode investigation. Here, a low-cost chemical methodology is reported to obtain large amount of microflowers made of interconnected NiO nanowalls (20 nm thick) wisely decorated with ultralow amounts of Pt nanoparticles. These decorated microflowers, dispersed onto graphene paper by drop casting, build a high performance HER electrode exhibiting an overpotential of only 66 mV at current density of 10 mA cm?2 under alkaline conditions. Intrinsic activity of catalyst was evaluated by measuring the Tafel plot (as low as 82 mV/dec) and turnover frequencies (2.07 s?1 for a Pt loading of 11.2 μg cm?2). The effect of Pt decoration has been modelled through energy band bending supported by electrochemical analyses. A full cell for alkaline electrochemical water splitting has been built, composed of Pt decorated NiO microflowers as cathode and bare NiO microflowers as anode, showing a low potential of 1.57 V to afford a current density of 10 mA cm?2 and a good long-term stability. The reported results pave the way towards an extensive utilization of Ni based nanostructures with ultralow Pt content for efficient electrochemical water splitting.  相似文献   

7.
Hydrogen evolution reaction (HER) is an important process in electrochemical energy technology, and efficient electrocatalysts are of great significance for renewable and sustainable energy conversion. Here, we report a facile hydrothermal and heat treatment process to synthesize a series of Pt-based nanocapsules (NCs) as an effective hydrogen evolution catalyst. The Pt/TeOx NCs exhibit excellent HER activity in an alkaline medium. The Pt/TeOx NCs only need the overpotential of 33 mV to achieve the current density of 10 mA cm−2, and the Tafel slope was as low as 29 mV dec−1, which was even better than that of commercial Pt/C. Detailed experimental characterizations demonstrate that the interface between the crystalline Pt/amorphous TeOx and the strong electron transfer contribute to alkaline HER activity. This work opens up a new direction for the preparation of efficient catalysts for electrocatalytic reactions or other conversion filed.  相似文献   

8.
This work describes the application of α-MnO2 and Pd/α-MnO2 as electrocatalysts in the oxygen evolution reaction (OER). Characterization data revealed that the Pd2+ precursor has been oxidized during the synthesis, and the resulting Pd4+ ions have unprecedently replaced the lattice framework Mn3+ ions of α-MnO2. Furthermore, formation of PdO nanoparticles was also observed. Lower OER overpotential at j = 10 mA cm?2 (636 mV) was obtained for Pd/α-MnO2 in relation to α-MnO2 (700 mV), what is in alignment with the lower charge transfer resistance of Pd/α-MnO2 (4.9 kΩ cm2) compared to α-MnO2 (10.4 kΩ cm2). Lower Tafel slope (73 mV dec?1) and higher TOF (2.87 × 10?4 s?1) at overpotential of 350 mV was obtained for Pd/α-MnO2 in relation to α-MnO2 (Tafel of 77 mV dec?1 and TOF of 1.94 × 10?4 s?1), indicating a faster electron transfer kinetics promoted by Pd. Pd/α-MnO2 was stable at j = 14 mA cm?2 for 6 h.  相似文献   

9.
Hydrogen evolution reaction (HER) is regarded as a feasible strategy for producing high-purity hydrogen from abundant water. It is significant yet challenging for synthesis of Pt-based pH-universal HER electrocatalysts by substantially reducing the Pt loading without any decay in the activity. Herein, bimetallic PtRh alloyed dendritic nanoassemblies (DNAs) were efficiently prepared by a facile one-pot solvothermal strategy in oleylamine (OAm), coupling with the aid of glycine and cetyltrimethylammonium chloride (CTAC). By virtue of the unique branch-like structures and compositions advantages, the PtRh DNAs catalyst showed steeply enhanced HER activity with small overpotentials (i.e. 28 mV in 1.0 M KOH, 23 mV in 1.0 M phosphate buffer solution and 27 mV in 0.5 M H2SO4) at the current density of 10 mA cm−2, surpassing those of commercial Pt/C under such conditions. This work provides a facile and rational strategy to construct advanced Pt-based bimetallic electrocatalyst for energy-correlated applications.  相似文献   

10.
In order to reduce the cost of electrocatalysts and increase the exposure of the Ir active sites while ensuring the stability of the catalyst, a N-doped carbon nanotube (NCNT) is applied as a conductive support to confine the Ir clusters for avoiding them growing up via a modified method based on pyrolysis of a mixture of melamine, ferric chloride and iridium trichloride. It is found that Ir species in the as-obtained Ir(20)/Fe@NCNT-900 composite exist in two forms, Ir nanoclusters (1–2 nm) dotted on the wall of NCNT and the Ir atomically scattered on the Fe nanoparticles wrapped in the NCNT. Although the Ir content of Ir(20)/Fe@NCNT-900 is extremely low (~4 wt% Ir), the composite catalyst delivers excellent activity for both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) with an exceptionally low overpotential of 4.7 mV/11 mV for HER and 300 mV/270 mV for OER to drive 10 mA cm?2 in 0.5 M H2SO4/1.0 M KOH electrolyte respectively, which exceeds the commercial Pt/C (20 wt% Pt) and IrO2 benchmarks. In addition, it has much higher mass activity for OER at 1.55 V (1.78 A mg?1Ir) than those of the referenced catalysts in acid. The cell voltage of the two-electrode system assembled by Ir(20)/Fe@NCNT-900 for total water splitting in acidic and alkaline media are only 1.520 V and 1.510 V to afford 10 mA cm?2 separately, lower than that of Pt/C||IrO2 and with a good stability. Our work provides a construction method of low-content precious metal composite catalysts which can be applied in OER and overall water splitting field.  相似文献   

11.
High-performance platinum nanoparticle catalysts (Pt–NPCs) remain the most widespread applied electrocatalysts for oxygen reduction reaction (ORR). Here, cetyltrimethylammonium bromide (CTAB), a surface-controlling agent, is introduced to modulate the microstructure and size of Pt nanoparticles (NPs) via a microwave-assisted heating process. The Pt-NPC assisted by 5 wt% CTAB exhibits the highest mass activity (MA) of 0.072 A mgPt?1 and specific activity (SA) of 0.077 mA cm?2, higher than those of commercial Pt/C (0.023 A mgPt?1 and 0.035 mA cm?2). Transmission electron microscopy (TEM) results indicate that Pt NPs are uniformly dispersed onto carbon supports with an average size of 2.39 nm. When applied in membrane electrode assembly (MEA), it exhibits the highest power density of 1.142 W cm?2, which is about 1.24 times larger than that of commercial Pt/C.  相似文献   

12.
Development of highly effective and stable electrocatalysts is urgent for various energy conversion applications. Herein, a facile co-reduction approach was developed to fabricate three-dimensional (3D) hyperbranched PtRh nanoassemblies (NAs) under solvothermal conditions, where creatinine and cetyltrimethylammonium chloride (CTAC) were employed as the structure-directing agents. The as-synthesized nanocatalyst exhibited intriguing catalytic characters for hydrogen evolution reduction (HER) with a low overpotential (20 mV) at 10 mA cm−2 and a small Tafel slope (49.01 mV dec−1). Meanwhile, the catalyst showed remarkably enlarged mass activity (MA: 2.16/2.02 A mg−1) and specific activity (SA: 4.16/3.88 mA cm−2) towards ethylene glycol and glycerol oxidation reactions (EGOR and GOR) alternative to commercial Pt black and homemade Pt3Rh nanodendrites (NDs), PtRh3 NDs and Pt nanoparticles (NPs). This method offers a feasible platform to fabricate bifunctional, efficient, durable and cost-effective nanocatalysts with finely engineered structures and morphologies for renewable energy devices.  相似文献   

13.
Efficient hydrogen production plays a key role in establishing hydrogen economy in the current world. In this study, we fabricated ultrafine RuO2 nanoparticles on carbon black to form a strawberry-like RuO2/C hybrid, using by a solid-phase grinding and subsequent low-temperature annealing. The synthesized hybrid displays very low reaction activation energy (28.5 KJ mol?1) for hydrogen evolution from ammonia borane. In case of hydrogen evolution from alkaline water, it also exhibits a remarkably improved electrocatalytic activity than a commercial Pt/C, with an ultra-low overpotential of 8 mV (at 10 mA cm?2). For the above bifunctional catalyst, the formed C–Ru–C bonds between the ruthenium oxide and carbon result in the ultrahigh activity of the hybrid, as evidenced by DFT results. This work offers a guideline to synthesize efficient metal-based (Ru, Pd, Rh, Ir, Au, etc.) catalysts with smart structures for catalysis.  相似文献   

14.
The synthesis of cost-effective and high-performance electrocatalysts for water splitting is the main challenge in electrochemical hydrogen production. In this study, we adopted a high throughput method to prepare bi-metallic catalysts for oxygen/hydrogen evolution reactions (OER/HER). A series of Ni–Mo alloy electrocatalysts with tunable compositions were prepared by a simple co-sputtering method. Due to the synergistic effect between Ni and Mo, the intrinsic electrocatalytic activity of the Ni–Mo alloy electrocatalysts is improved, resulting in excellent HER and OER performances. The Ni90Mo10 electrocatalyst shows the best HER performance, with an extremely low overpotential of 58 mV at 10 mA cm?2, while the Ni40Mo60 electrocatalyst shows an overpotential of 258 mV at 10 mA cm?2 in OER. More significantly, the assembled Ni40Mo60//Ni90Mo10 electrolyzer only needs a cell voltage of 1.57 V to reach 10 mA cm?2 for overall water splitting.  相似文献   

15.
The development of efficient and low-cost electrocatalysts for hydrogen evolution reaction (HER) is of importance. Herein, we demonstrate a self-supported Ni2P nanostructure with nanorod arrays morphology, fabricated by directly growing metal-organic frameworks (MOFs) on the commercial nickel foam prior to phosphorization treatment, as an electrocatalyst for HER. This electrocatalyst exhibits remarkable electrocatalytic HER activity in an alkaline electrolyte, affording current densities of 10 and 100 mA cm?2 at the overpotentials of 120 and 168 mV, respectively, accompanied with a low Tafel slope of 37 mV dec?1. Furthermore, this electrocatalyst shows a current density of 105 mA cm?2, and this current density can be retained for more than 20 h, suggesting its superior stability. This remarkable HER performance is believed a result of superiority for its structural integrality and mechanical stability.  相似文献   

16.
A kind of composite electrocatalysts with the structure of MoO3 nanosheets coated by ZIF67 nanocrystals and grown on the nickel foam substrate (ZIF67@MoO3 NSs@NF) is prepared and mainly used as the electrode for oxygen evolution reaction (OER) and overall water splitting. The excellent electrocatalytic activity of ZIF67@MoO3 NSs@NF are demonstrated. It can use the overpotential (?) of 178 mV and 386 mV respectively to drive 10 mA cm?2 and 50 mA cm?2. It is also observed that the ZIF67@MoO3 NSs@NF electrode has the highest initial current density (45.7 mA cm?2) at 1.618 V and can maintain more than 90% of the initial current density after 20,000 s. The ZIF67@MoO3 NSs@NF electrode also shows the small HER overpotential of 135 mV at 10 mA cm?2. Furthermore, the voltage of ZIF67@MoO3 NSs@NF as a bifunctional overall water splitting catalysts is 1.58 V at 10 mA cm?2, which is superior to another noble metal electric catalyst combination RuO2/NF(+)//Pt–C/NF(?). And the ZIF67@MoO3 NSs@NF(+)//ZIF67@MoO3 NSs@NF(?) combination can maintain more than 90% of the initial current density after 65,000 s at 1.58 V. The main reason is the composite interface of MoO3 NSs and ZIF67 phases with Co–O bonds, C–O–Mo bonds and oxygen vacancies defects facilitates the increase of the active sites and efficient electron transfer rate.  相似文献   

17.
This work demonstrates a facile Nb2O5-decorated electrocatalyst to prepare cost-effective Ni–Fe–P–Nb2O5/NF and compared HER & OER performance in alkaline media. The prepared electrocatalyst presented an outstanding electrocatalytic performance towards hydrogen evolution reaction, which required a quite low overpotential of 39.05 mV at the current density of ?10 mA cm?2 in 1 M KOH electrolyte. Moreover, the Ni–Fe–P–Nb2O5/NF catalyst also has excellent oxygen evolution efficiency, which needs only 322 mV to reach the current density of 50 mA cm?2. Furthermore, its electrocatalytic performance towards overall water splitting worked as both cathode and anode achieved a quite low potential of 1.56 V (10 mA cm?2).  相似文献   

18.
The development of cost-effective, highly efficient and stable electrocatalysts for alkaline water electrolysis at a large current density has attracted considerable attention. Herein, we reported a one-dimensional (1D) porous Mo2C/Mo2N heterostructured electrocatalyst on carbon cloth as robust electrode for large current hydrogen evolution reaction (HER). The MoO3 nanobelt arrays and urea were used as the metal and non-metal sources to fabricate the electrocatalyst by one-step thermal reaction. Due to the in-situ formed abundant high active interfaces and porous structure, the Mo2C/Mo2N electrocatalyst shows enhanced HER activity and kinetics, as exemplified by low overpotentials of 54, 73, and 96 mV at a current density of 10 mA cm?2 and small Tafel slopes of 48, 59 and 60 mV dec?1 in alkaline, neutral and acid media, respectively. Furthermore, the optimal Mo2C/Mo2N catalyst only requires a low overpotential of 290 mV to reach a large current density of 500 mA cm?2 in alkaline media, which is superior to commercial Pt/C catalyst (368 mV) and better than those of recently reported Mo-based electrocatalysts. This work paves a facile strategy to construct highly efficient and low-cost electrocatalyst for water splitting, which could be extended to fabricate other heterostructured electrocatalyst for electrocatalysis and energy conversion.  相似文献   

19.
A class of ruthenium-nickel alloy catalysts featured with nanoporous nanowires (NPNWs) were synthesized by a strategy combining rapid solidification with two-step dealloying. RuNi NPNWs exhibit excellent electrocatalytic activity and stability for oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in which the RuNi-2500 NPNWs catalyst shows an OER overpotential of 327 mV to deliver a current density of 10 mA cm?2 and the RuNi-0 NPNWs catalyst requires the overpotential of 69 mV at 10 mA cm?2 showing the best HER activity in alkaline media. Moreover, the RuNi-1500 NPNWs catalyst was used as the bifunctional electrocatalyst in a two-electrode alkaline electrolyzer for water splitting, which exhibits a low cell voltage of 1.553 V and a long-term stability of 24 h at 10 mA cm?2, demonstrating that the RuNi NPNWs catalysts can be considered as promising bifunctional alkaline electrocatalysts.  相似文献   

20.
Efficient electrocatalyst for alkaline oxygen evolution reaction is the critical core to the wide application of metal-air energy storage and water electrolysis hydrogen energy. Therefore, appropriate design of highly active and stable non-noble metal oxygen evolution electrocatalyst with good electronic structure and multilevel structure is both a goal and a challenge. Here, we report a Fe–Ni2P electrocatalyst (NiFeP-MOF) with multilevel structure, which was obtained by anion exchange on the basis of Fe–Ni(OH)2 (NiFe-MOF) grown on nickel foam in situ by solvothermal method. As expected, Fe substitution regulates the Ni oxidation state in the NiFeP-MOF and realizes electronic structure coupling, showing a highly active and stable oxygen evolution reaction (OER) in alkaline electrolyte solution. Specifically, the NiFeP-MOF demonstrates an ultralow overpotentials (232 mV, 10 mA cm?2; 267 mV 100 mA cm?2), respectively, an extremely small Tafel slope (34 mV dec?1). Separately, the electrocatalyst shows an excellent cycle stability at 10 mA cm?2 for 12 h (43,200 s). More importantly, this work come up with an available policy for the preparation of excellent alkaline hydrolysis electrolysis catalysts and air cathodes with excellent performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号