首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper designs an off-grid charging station for electric and hydrogen vehicles. Both the electric and hydrogen vehicles are charged at the same time. They appear as two electrical and hydrogen load demand on the charging station and the charging station is powered by solar panels. The output power of solar system is separated into two parts. On part of solar power is used to supply the electrical load demand (to charge the electric vehicles) and rest runs water electrolyzer and it will be converted to the hydrogen. The hydrogen is stored and it supplies the hydrogen load demand (to charge the hydrogen-burning vehicles). The uncertainty of parameters (solar energy, consumed power by electrical vehicles, and consumed power by hydrogen vehicles) is included and modeled. The fuel cell is added to the charging station to deal with such uncertainty. The fuel cell runs on hydrogen and produces electrical energy to supply electrical loading under uncertainties. The diesel generator is also added to the charging station as a supplementary generation. The problem is modeled as stochastic optimization programming and minimizes the investment and operational costs of solar and diesel systems. The introduced planning finds optimal rated powers of solar system and diesel generator, operation pattern for diesel generator and fuel cell, and the stored hydrogen. The results confirm that the cost of changing station is covered by investment cost of solar system (95%), operational cost of diesel generator (4.5%), and investment cost of diesel generator (0.5%). The fuel cell and diesel generator supply the load demand when the solar energy is zero. About 97% of solar energy will be converted to hydrogen and stored. The optimal operation of diesel generator reduces the cost approximately 15%.  相似文献   

2.
Transportation sector is the important sector and consumed the most fossil fuel in the world. Since COVID-19 started in 2019, this sector had become the world connector because every country relies on logistics. The transportation sector does not only deal with the human transportation but also relates to logistics. Research in every country has searched for alternative transportation to replace internal combustion engines using fossil fuel, one of the most prominent choices is fuel cells. Fuel cells can use hydrogen as fuel. Hydrogen can be fed to the fuel cells to provide electric power to drive vehicles, no greenhouse gas emission and no direct combustion required. The fuel cells have been developed widely as the 21st century energy-conservation devices for mobile, stationary, and especially vehicles. The fuel cell electric vehicles using hydrogen as fuel were also called hydrogen fuel cell vehicles or hydrogen electric vehicles. The fuel cells were misconceived by several people that they were batteries, but the fuel cells could provide electric power continuously if their fuel was provided continuously. The batteries could provide electric power as their only capacities, when all ions are released, no power could be provided. Because the fuel cell vehicles play important roles for our future transportation, the overall review for these vehicles is significantly interesting. This overall review can provide general and technical information, variety of readers; vehicle users, manufacturers, and scientists, can perceive and understand the fuel cell vehicles within this review. The readers can realize how important the fuel cell technologies are and support research around the world to drive the fuel cell vehicles to be the leading vehicles in our sustainable developing world.  相似文献   

3.
Considerable attention has been paid to energy security and climate problems caused by road vehicle fleets. Fuel cell vehicles provide a new solution for reducing energy consumption and greenhouse gas emissions, especially those from heavy-duty trucks. Although cost may become the key issue in fuel cell vehicle development, with technological improvements and cleaner pathways for hydrogen production, fuel cell vehicles will exhibit great potential of cost reduction. In accordance with the industrial plan in China, this study introduces five scenarios to evaluate the impact of fuel cell vehicles on the road vehicle fleet greenhouse gas emissions in China. Under the most optimistic scenario, greenhouse gas emissions generated by the whole fleet will decrease by 13.9% compared with the emissions in a scenario with no fuel cell vehicles, and heavy-duty truck greenhouse gas emissions will decrease by nearly one-fifth. Greenhouse gas emissions intensity of hydrogen production will play an essential role when fuel cell vehicles' fuel cycle greenhouse gas emissions are calculated; therefore, hydrogen production pathways will be critical in the future.  相似文献   

4.
This paper studies the transient response of the output voltages of a Ballard-Mark-V 35-cell 5 kW proton exchange membrane fuel cell (PEMFC) stack with power conversion for applications in autonomous underwater vehicles (AUVs) under load changes. Four types of pulse-width modulated (PWM) dc-dc power converters are employed to connect to the studied fuel cell in series for converting the unregulated fuel cell stack voltage into the desired voltage levels. The fuel cell model in this paper consists of the double-layer charging effect, gases diffusion in the electrodes, and the thermodynamic characteristic; PWM dc-dc converters are assumed to operate in continuous-conduction mode with a voltage-mode control compensator. The models of the study's fuel cell and PWM dc-dc converters have been implemented in a Matlab/SIMULINKTM environment. The results show that the output voltages of the studied PEMFC connected with PWM dc-dc converters during a load change are stable. Moreover, the model can predict the transient response of hydrogen/oxygen out flow rates and cathode and anode channel temperatures/pressures under sudden change in load current.  相似文献   

5.
Boeing Research & Technology Europe has designed, developed and subsequently bench and flight tested, in a wide range of different operative conditions, an electric Unmanned Air Vehicle (UAV) powered by a hybrid energy source. The energy source features a 200 We Polymer Electrolyte Membrane (PEM) fuel cell system fed by a chemical hydride hydrogen generator that produces highly pure hydrogen at the fuel cell operating pressure from the controlled hydrolysis of Sodium Borohydride (NaBH4), resulting in 900 Wh of energy from 1 L of chemical solution. Equipped also with high specific energy Lithium Polymer batteries, this fuel cell powered UAV is able to achieve flight durations close to 4 h.This paper summarizes the aircraft and systems design, the results of the bench and flight tests along with the main challenges faced during this development and the lessons learned for future optimization.  相似文献   

6.
We describe a metal hydride (MH) hydrogen storage tank for light fuel cell vehicle application developed at HySA Systems. A multi-component AB2-type hydrogen storage alloy was produced by vacuum induction melting (10 kg per a load) at our industrial-scale facility. The MH alloy has acceptable H sorption performance, including reversible H storage capacity up to ∼170 NL/kg (1.5 wt% H). The cassette-type MH tank was made up of 2 cylindrical aluminium canisters with transversal internal copper fins and external aluminium fins for improving the heat exchange between the heating medium and the MH tank. Heat supply and removal was provided from the outside using air at T = 15–25 °C. The MH tank was tested at the conditions of natural or forced (velocity ∼2 m/s) air convection. The tests included H2 charge of the tank at P = 15–40 bar and its discharge at P = 1 bar. The tank in the H2 discharge mode was also tested together with open cathode low-temperature proton exchange membrane fuel cell (LT PEMFC).  相似文献   

7.
Hydrogen as compressed gas is a promising option for zero-emission fuel cell vehicle. The fast and efficient refueling of high pressure hydrogen can provide a convenient platform for fuel cell vehicles to compete with conventional gasoline vehicles. This paper reports the finding of adiabatic simulation of the refueling process for Type IV tank at nominal working pressure of 70 MPa with considering the station refueling conditions. The overall heat transfer involved in refueling process was investigated by heat capacity model based on MC method defined by SAE J2601. The simulation results are validated against experimental data of European Commission's Gas Tank Testing Facility at Joint Research Centre (GasTef JRC), Netherlands. The results confirmed that end temperature and state of charge significantly depends on refueling parameters mainly supply hydrogen temperature and filling rate.  相似文献   

8.
Nowadays, renewable power system solutions are widely investigated for residential applications. Grid-connected systems including energy storage elements are designed. Advanced research is actually focused on improving the reliability and energy density of renewable systems reducing the whole utility cost. Source and load modeling, power architectures and algorithms are only a few topics to be addressed. Designers have to carefully deal with each subtopic prior to design efficient renewable energy systems. In the literature, each topic is separately discussed and the lack of a unique reference guide is clear to power electronics designers. In this paper, each design step including source and load modeling, hybrid supply architectures and power algorithms, is carefully addressed. A review of existing solutions is presented. The correlation between each topic is deeply analyzed. Guidelines for system design are given. This paper can be referenced as a detailed review of renewable energy system design issues and solutions.  相似文献   

9.
10.
Traditional power management systems for hybrid vehicles often focus on the optimization of one particular cost factor, such as fuel consumption, under specific driving scenarios. The cost factor is usually based on the beginning-of-life performance of system components. Typically, such strategies do not account for the degradation of the different components of the system over their lifetimes. This study incorporates the effect of fuel cell and battery degradation within their cost factors and investigates the impact of different power management strategies on fuel cell/battery loads and thus on the operating cost over the vehicle's lifetime. A simple rule-based power management system was compared with a model predictive controller (MPC) based system under a connected vehicle scenario (where the future vehicle speed is known a priori within a short time horizon). The combined cost factor consists of hydrogen consumption and the degradation of both the fuel cell stack and the battery. The results show that the rule-based power management system actually performs better and achieves lower lifetime cost compared to the MPC system even though the latter contains more information about the drive cycle. This result is explained by examining the changing dynamics of the three cost factors over the vehicle's lifetime. These findings reveal that a limited knowledge of traffic information might not be as useful for the power management of certain fuel cell/battery hybrid vehicles when degradation is taken into consideration, and a simple tuned rule-based controller is adequate to minimize the lifetime cost.  相似文献   

11.
Efficiencies of hydrogen storage systems onboard fuel cell vehicles   总被引:2,自引:1,他引:2  
Energy efficiency, vehicle weight, driving range, and fuel economy are compared among fuel cell vehicles (FCV) with different types of fuel storage and battery-powered electric vehicles. Three options for onboard fuel storage are examined and compared in order to evaluate the most energy efficient option of storing fuel in fuel cell vehicles: compressed hydrogen gas storage, metal hydride storage, and onboard reformer of methanol. Solar energy is considered the primary source for fair comparison of efficiencies for true zero emission vehicles. Component efficiencies are from the literature. The battery powered electric vehicle has the highest efficiency of conversion from solar energy for a driving range of 300 miles. Among the fuel cell vehicles, the most efficient is the vehicle with onboard compressed hydrogen storage. The compressed gas FCV is also the leader in four other categories: vehicle weight for a given range, driving range for a given weight, efficiency starting with fossil fuels, and miles per gallon equivalent (about equal to a hybrid electric) on urban and highway driving cycles.  相似文献   

12.
Since 2003, the National Fuel Cell Research Center at the University of California, Irvine (UCI) has operated the first U.S. publicly accessible hydrogen refueling station (HRS). During this period, the UCI HRS supported all manufacturers in the early, pre-commercialization years of the fuel cell electric vehicle (FCEV). This paper describes and analyzes the performance of the UCI HRS during the first five years of FCEV commercialization, over which time the station has dispensed the most hydrogen daily in the California network. The station performance is compared to aggregate data published by NREL for all U.S. HRSs. Using the Hydrogen Delivery Scenario Analysis Model, typical daily refueling profiles are analyzed to determine the effect on HRS design. The results show different daily refueling profiles could substantially affect HRS design and ultimately the cost of hydrogen. While technical issues have been reduced, the compressor, dispenser, and fueling rate are areas for improvement.  相似文献   

13.
This paper presents the utilization of a supercapacitor (SC) as an auxiliary power source in an electric vehicle (EV), composed of a proton electrolyte membrane fuel cell (PEMFC) as the main energy source. The main weak point of PEMFC is slow dynamics because one must limit the fuel cell current slope in order to prevent fuel starvation problems, to improve its performance and lifetime. The very fast power response and high specific power of a supercapacitor can complement the slower power output of the main source to produce the compatibility and performance characteristics needed in a propulsion system. DC-DC converters connected to the hybrid source ensure a constant voltage value in inverters inputs. After an architecture presentation of the hybrid energy source, two parallel-type configurations are explored in more detail. For each of them, the energy flow control and management, validated simulation shows the performance obtained in this configuration. The hybrid source management is based primarily on the intervention of the supercapacitor in fugitives' schemes such as slopes, different speeds and rapid acceleration. Secondly, the PEMFC intervenes to guarantee the power in permanent regime. Finally, simulation results considering energy management are presented and illustrated the hybrid energy source benefits.  相似文献   

14.
The commercial vehicles are in leadership in emission production for on-road vehicles. This high rate of emission is released in highly populated areas where diesel driven internal combustion engines are running in inefficient operating ranges. Except the propulsion, the internal combustion engine is powering the auxiliary devices such as refrigerator unit, etc. The auxiliary units are significant contributor to the overall pollutant production. In this paper the auxiliary load power supply for refrigerator unit is shifted from internal combustion engine to PEM fuel cell. The decrease in CO2 accumulated emissions was estimated by simulation model containing vehicle model (tire, brake, differential, gearbox and driver model), diesel engine model and auxiliary power demand model. Four stroke diesel engine was modeled and investigated. For this investigation the fully filled truck was used for simulating 100% weight load. The gross weight is 7500 kg.The novelty of the approach is the simulation performed on realistic combination of city and urban road cycle. The focus was on modelling the realistic truck driving cycle in order to correctly predict emission and fuel consumption reduction. Since initial investigation are performed on constant load demand of fuel cell, simplified model of PEMFC was applied. PEM fuel cell stack was designed in order to meet the demands of auxiliary consumers. The H2 consumption and size of hydrogen tank was estimated based on assumed 8-h daily drive. Finally, the migration of power supply for auxiliary units on commercial vehicle from internal combustion engine showed potential of fuel savings and CO2 reduction of up to 9% for a given case on this specific test cycle.  相似文献   

15.
This paper introduces thermodynamic and economic analyses on a newly developed energy system for powering hybrid vehicles based on both energy and exergy concepts. The proposed hybrid propulsion system incorporates a liquefied ammonia tank, ammonia dissociation and separation unit (DSU), an internal combustion engine (ICE), and a fuel cell (FC) system. The exhaust gases released from the ICE are exploited to supply the necessary thermal energy to decompose ammonia thermally into hydrogen and nitrogen on board. The ICE is fuelled with a blend of ammonia and hydrogen generated from the DSU. The additional hydrogen released from the DSU will also be provided to the fuel cell system to run the FC and generate electric power, which will be supplied to the electric motor to provide the required traction to the vehicle. An optimization study is also performed to identify optimum design variables. The parametric studies are included in this investigation to evaluate the influence of varying the different operational parameters on the system energy and exergy efficiencies and both total cost rate and exergoeconomic factor values of the system.  相似文献   

16.
The goal of the EU Horizon 2020 RISE project 778307 “Hydrogen fuelled utility vehicles and their support systems utilising metal hydrides” (HYDRIDE4MOBILITY), is in addressing critical issues towards a commercial implementation of hydrogen powered forklifts using metal hydride (MH) based hydrogen storage and PEM fuel cells, together with the systems for their refuelling at industrial customers facilities. For these applications, high specific weight of the metallic hydrides has an added value, as it allows counterbalancing of a vehicle with no extra cost. Improving the rates of H2 charge/discharge in MH on the materials and system level, simplification of the design and reducing the system cost, together with improvement of the efficiency of system “MH store-FC”, is in the focus of this work as a joint effort of consortium uniting academic teams and industrial partners from two EU and associated countries Member States (Norway, Germany, Croatia), and two partner countries (South Africa and Indonesia).The work within the project is focused on the validation of various efficient and cost-competitive solutions including (i) advanced MH materials for hydrogen storage and compression, (ii) advanced MH containers characterised by improved charge-discharge dynamic performance and ability to be mass produced, (iii) integrated hydrogen storage and compression/refuelling systems which are developed and tested together with PEM fuel cells during the collaborative efforts of the consortium.This article gives an overview of HYDRIDE4MOBILITY project focused on the results generated during its first phase (2017–2019).  相似文献   

17.
This paper describes the characteristics and performance of a fuel cell powered unmanned aircraft. The aircraft is novel as it is the largest compressed hydrogen fuel cell powered airplane built to date and is currently the only fuel cell aircraft whose design and test results are in the public domain. The aircraft features a 500 W polymer electrolyte membrane fuel cell with full balance of plant and compressed hydrogen storage incorporated into a custom airframe. Details regarding the design requirements, implementation and control of the aircraft are presented for each major aircraft system. The performances of the aircraft and powerplant are analyzed using data from flights and laboratory tests. The efficiency and component power consumption of the fuel cell propulsion system are measured at a variety of flight conditions. The performance of the aircraft powerplant is compared to other 0.5–1 kW-scale fuel cell powerplants in the literature and means of performance improvement for this aircraft are proposed. This work represents one of the first studies of fuel cell powered aircraft to result in a demonstration aircraft. As such, the results of this study are of practical interest to fuel cell powerplant and aircraft designers.  相似文献   

18.
South Korea is an outstanding pioneer of fuel cell electric vehicle (FCEV) technology, an industry that is fundamental to the hydrogen ecosystem. This study aims to explore possible pathways for the successful adoption of FCEV in the local region. By using the fuzzy-set quality comparative analysis (fs/QCA) method, we identify three auspicious pathways based on the 16 regional cases in Korea. We find that, first, a large number of hydrogen (H2) stations will lead to successful FCEV adoption (H2 STATION→FCEV). Second, the combination of high levels of greenhouse gases(GHGs) and the local government-driven future construction plans of H2 stations can also be a remarkable pathway (GHGs1 PLAN→FCEV). Lastly, a combination of high levels of GHGs and subsidies can be another compelling pathway (GHGs1 SUBSIDIES→FCEV). This study provides early evidence of FCEVs adoption and can be of use to latecomer countries to the hydrogen economy.  相似文献   

19.
In order to consider the effect of battery temperature on the total fuel consumption when a Pontryagin's Minimum Principle (PMP)-based power management strategy is applied to a fuel cell hybrid vehicle (FCHV), this paper designates the battery temperature as a second-state variable other than the battery state of charge (SOC) and defines a new costate for the battery temperature in the control problem. The PMP-based power management strategy is implemented in a computer simulation and the relationship among the final values of the two state variables and the total fuel consumption is illustrated based on the simulation results. This relationship is defined as an optimal surface in this research. Using the optimal surface, it can be concluded that considering the battery temperature effect in the PMP-based power management strategy improves the fuel economy of the FCHV. Potential fuel economy gains attributed to consideration of the battery temperature effect are also determined based on the optimal surfaces.  相似文献   

20.
This paper presents the design and simulation validation of two energy management strategies for dual-stack fuel cell electric vehicles. With growing concerns about environmental issues and the fossil energy crisis, finding alternative methods for vehicle propulsion is necessary. Proton exchange membrane (PEM) fuel cell systems are now considered to be one of the most promising alternative energy sources. In this work, the challenge of further improving the fuel economy and extending the driving range of a fuel cell vehicle is addressed by a dual-stack fuel cell system with specific energy management strategies. An efficiency optimization strategy and an instantaneous optimization strategy are proposed. Simulation validation for each strategy is conducted based on a dual-stack fuel cell electric vehicle model which follows the new European driving cycle (NEDC). Simulation results show that a dual-stack fuel cell system with proposed energy management strategies can significantly improve the fuel economy of a fuel cell vehicle and thus lengthen the driving range while being able to keep the start-stop frequency of the fuel cell stack within a reasonable range.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号