首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Hydrogen is considered to be one of the fuels of future and liquid hydrogen (LH2) technology has great potential to become energy commodity beyond LNG. However, for commercial widespread use and feasibility of hydrogen technology, it is of utmost importance to develop cost-effective and safe technologies for storage and transportation of LH2 for use in stationary applications as well as offshore transportation. This paper reviews various aspects of global hydrogen supply chain starting from several ways of production to storage and delivery to utilization. While each these aspects contribute to the overall success and efficiency of the global supply chain, storage and delivery/transport are the key enablers for establishing global hydrogen technology, especially while current infrastructure and technology are being under development. In addition, while all storage options have their own advantages/disadvantages, the LH2 storage has unique advantages due to the familiarity with well-established LNG technology and existing hydrogen technology in space programs. However, because of extremely low temperature constraints, commercialization of LH2 technology for large-scale storage and transportation faces many challenges, which are discussed in this paper along with the current status and key gaps in the existing technology.  相似文献   

2.
In earlier work the three-dimensional time dependent fully compressible CFD code ADREA-HF was applied against large-scale LH2 release experiments in the vicinity of buildings. In the present contribution the ADREA-HF code is applied to simulate large-scale LH2 spill tests in open, unobstructed environment. A series of simulations were performed to investigate on the effects of the source model (jet or pool), the modeling of the earthen sides of the pond around the source and the inclusion of a contact ground heat transfer. The predicted hydrogen concentrations (by vol.) are compared against the experimental at the available sensor locations. In addition the predicted structure of the concentration field is compared against the experimental, which was originally derived from temperature measurements. Modeling the source as a two-phase jet pointing downwards, including the modeling of the earthen sides of the pond as a fence and the contact heat transfer to the ground gave the best agreement with respect to experimental behavior.  相似文献   

3.
    
Liquid hydrogen (LH2) storage is viewed as a viable approach to assure sufficient hydrogen capacity at commercial fuelling stations. Presently, LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e., LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery and site transfer process. The behavior of cold hydrogen plumes has not been well characterized because of the sparsity of empirical field data, which can lead to overly conservative safety requirements. Committee members of the National Fire Protection Association (NFPA) Standard 2 [1] formed the Hydrogen Storage Safety Task Group, which consists of hydrogen producers, safety experts, and computational fluid dynamics modellers, has identified the lack of understanding of hydrogen dispersion during LH2 venting of storage vessels as a critical gap for establishing safety distances at LH2 facilities, especially commercial hydrogen fuelling stations. To address this need, the National Renewable Energy Laboratory Sensor Laboratory, in collaboration with the NFPA Hydrogen Storage Task Group, developed a prototype Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. The prototype analyzer was field deployed during an actual LH2 venting process. Critical findings included:
  • •Hydrogen above the lower flammable limit (LFL) was detected as much as 2 m lower than the release point, which is not predicted by existing models.
  • •Personal monitors detected hydrogen at ground level, although at levels below the LFL.
  • •A small but inconsistent correlation was found between oxygen depletion and the hydrogen concentration.
  • •A negligible to non-existent correlation was found between in-situ temperature measurements and the hydrogen concentration.
The prototype analyzer is being upgraded for enhanced metrological capabilities, including improved real-time spatial and temporal profiling of hydrogen plumes and tracking of prevailing weather conditions. Additional deployments are planned to monitor plume behavior under different wind, humidity, and temperature conditions. The data will be shared with the Hydrogen Storage Task Group and ultimately will be used support theoretical models and code requirements prescribed in NFPA 2.  相似文献   

4.
To further explore the application feasibility of Zr2Co alloy in tritium-related fields, hydrogenation/dehydrogenation properties of this material of crystalline or amorphous structure, prepared by arc melting or melt spinning, were studied by pressure-composition temperature measurement, X-ray diffraction, differential scanning calorimeter, thermal desorption spectroscopy. It was found that the two kinds of Zr2Co alloys can absorb hydrogen in a close full concentration of ~9 mmol/g, and may have similar equilibrium hydrogen pressure in the order of 10?6 Pa at room temperature. In their hydrogenated samples various hydrides were observed to form, including ZrH2, Zr2CoH5, ZrCoH3 and an amorphous one with gradually decreasing general thermostability. The amorphous alloy exhibited easier hydrogen induced disproportionation caused by highly stable ZrH2 and much slower hydrogen absorption kinetics. This disproportionation behavior of the crystalline alloy was found to be entirely suppressed by changing heating process. The results firmly indicate that crystalline Zr2Co alloy could be more favorable for tritium treatment due to very low equilibrium pressure and the feasibility of eliminating the disproportionation.  相似文献   

5.
2Mg-Fe mixtures produced by high-energy ball milling were consolidated into bulk form by hot extrusion at different processing temperatures (573 K (300 °C), 623 K (350 °C) and 673 K (400 °C)), aiming to evaluate their influence on the structure and microstructure of bulk materials and their consequent influence on the hydrogen sorption properties. In spite being in the nanosize range, the highest the processing temperature, the larger the grain sizes. However, the nanometric grain size remained after any hot extrusion condition, as estimated by Rietveld refinement. The pinning effect of Fe on Mg grain boundaries explained this effect. In the first absorption (activation), powders showed a hydrogen storage capacity of ~4.53 wt%, while the extruded samples (bulk materials) reached almost the same capacity during the period of hydrogenation (~94% of the maximum hydrogen storage capacity for Mg2FeH6 - 5.5 wt%). The smallest crystallite sizes and highest surface area for hydrogenation explain the good performance of powders. However, when comparing only extruded samples, it was observed that the highest capacity and the lowest incubation times were mainly related to grain sizes and to the favorable texture along (002) plane of αMg. The desorption temperature of bulk materials was very similar to that of powders, which is good considering the lower surface area of bulk materials.  相似文献   

6.
Within the framework of this paper, a short motivation for hydrogen as a fuel is provided and recent developments in the field of fuel cell vehicles are described. In particular, the propulsion system and its efficiency, as well as the integration of the hydrogen storage system are discussed. A fuel cell drivetrain poses certain requirements (concerning thermodynamic and engineering issues) on the operating conditions of the tank system. These limitations and their consequences are described. For this purpose, conventional and novel storage concepts will be shortly introduced and evaluated for their automotive viability and their potential impact. Eventually, GM's third generation vehicles (i.e. the HydroGen3) are presented, as well as the recent 4th generation Chevrolet Equinox Fuel Cell SUV. An outlook is given that addresses cost targets and infrastructure needs.  相似文献   

7.
Hydrogen adsorption properties of some Co-and Zn-based Metal-Organic Framework (MOF) materials were studied at near ambient temperatures. Maximal hydrogen storage capacity of 0.75 wt% was found for a Zn-based material at 175 Bar hydrogen pressure and T = −4 °C. Hydrogen adsorption correlated linearly with BET surface area and strongly depends on temperature. Relatively low structural stability of some MOF's results in framework collapse during degassing and hydrogen adsorption measurements.  相似文献   

8.
In this work, NaBH4+2MgH2 doped by ZrF4 was prepared by the ball-milling method. The structure and the morphology of different systems were characterized by X-ray diffraction and scanning electron microscopy. The thermodynamic properties of hydrogen release were determined by temperature-programmed desorption and differential scanning calorimetry. Hydrogen desorption kinetic properties and hydrogen content were investigated by pressure composition isothermal method. The main objective of this work was to study the relationship between the heat of hydrogen release and the quantity of hydrogen released by In-situ calorimetry measurement. The NaBH4+2MgH2+0.1ZrF4 can release about 7.4 wt.% H2 by two steps. Firstly, the heat of hydrogen release of the first and the second steps were lower by 480.82 J·g?1 and 430.8 J·g?1 than that of NaBH4+2MgH2, respectively. And the dehydrogenation enthalpy of NaBH4+2MgH2 went from ?243.81 kJ·mol?1 to ?191.2 kJ·mol?1. Secondly, the addition of ZrF4 can improve the hydrogen release kinetic property of NaBH4+2MgH2, which can release 5 wt.% H2 in 2.5 h at 385 °C under 0.01 MPa hydrogen pressure. Therefore, NaBH4+2MgH2+0.1ZrF4 will be a potential candidate as a fuel cell hydrogen supply system.  相似文献   

9.
The United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR.  相似文献   

10.
A multiscale approach is used to investigate the hydrogen adsorption in nanoporous Zeolite Imidazolate Frameworks (ZIFs) on varying geometries and organic linkers. Ab initio calculations are performed at the MP2 level to obtain correct interaction energies between hydrogen molecules and the ZIF structures. Subsequently, classical grand canonical Monte-Carlo (GCMC) simulations are carried out to obtain the hydrogen uptake of ZIFs at different thermodynamic conditions of pressure and temperature.  相似文献   

11.
Two-dimensional graphene material is doped with Ni-B nanoalloys via a chemical reduction method, and shows that the optimal graphene doped with Ni (0.14 wt.%) and B (0.63 wt.%) has a hydrogen capacity of 2.81 wt.% at 77 K and 106 kPa, which is more than twice of that of the pristine graphene. The measured adsorption isotherms of hydrogen and nitrogen suggest that the Ni-B nanoalloys function as catalytic centers to induce the dissociative adsorption of hydrogen (spillover) on the graphene. The Ni-B nanoalloys without using any noble metal may be a promising catalyst for hydrogen storage application.  相似文献   

12.
Identification of effective catalyst is a subject of great interest in developing MgH2 system as a potential hydrogen storage medium. In this work, the effects of typical titanium compounds (TiF3, TiCl3, TiO2, TiN and TiH2) on MgH2 were systematically investigated with regard to hydrogen sorption kinetics. Among them, adding TiF3 leads to the most pronounced improvement on both absorption and desorption rates. Comparative studies indicate that the TiH2 and MgF2 phases in situ introduced by TiF3 fail to explain the superior catalytic activity. However, a positive interaction between TiH2 and MgF2 is observed. Detailed comparison between the effect of TiF3 and TiCl3 additive suggests the catalytic role of F anion. XPS examination reveals that new bonding state(s) of F anion is formed in the MgH2 + TiF3 system. On the basis of these results, we propose that the substantial participation of F anion in the catalytic function contributes to the superior activity of TiF3.  相似文献   

13.
Metal organic frameworks (MOF) are a type of nanoporous materials with large specific surface area, which are especially suitable for gas separation and storage. In this work, we report a new approach of crosslinking UiO-66-(OH)2 to enhance its hydrogen storage capacity. UiO-66-(OH)2 was synthesized using hafnium tetrachloride (HfCl4) and 2, 5-dihydroxyterephthalic acid (DTPA) through a canonical modulated hydrothermal method (MHT), followed by a post-synthesis modification, which is to form a crosslinking structure inside the porous structure of UiO-66-(OH)2. During the modification process, the phenolic hydroxyl groups on the UiO-66-(OH)2 reacted with methanal, and HCl aqueous solution and triethylamine served as catalyst (the products denoted as UiO-66-H and UiO-66-T, respectively). Powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), 13C nuclear magnetic resonance spectroscopy (13C NMR) proved that the crosslinking was formed. The BET specific surface area and the average adsorption pore size of UiO-66-H and UiO-66-T significantly increased after modification. The hydrogen storage capacity of UiO-66-H reached a maximum of 3.37 wt% (16.87 mmol/g) at 77 K, 2 MPa. Hydrogen adsorption enthalpy of UiO-66-T was 0.986 kJ/mol, which was higher than that of UiO-66-(OH)2 (0.695 kJ/mol). This work shows that UiO-66-(OH)2 is a promising candidate for potential application in high-performance hydrogen storage.  相似文献   

14.
Pd–Mg–Pd thin films prepared by magnetron sputtering could absorb hydrogen entirely at room temperature and dehydrogenate completely and rapidly in ambient air. Our investigations of the structural, optical and electrical properties gave a detailed insight into the desorption mechanism. The overall activation energy and the hydrogen diffusion coefficient were deduced to be 48 kJ mol−1 and 8.0 × 10−15 cm2 s−1 based on optical and electrochemical measurements, respectively. The desorption process followed the nucleation and growth mechanism by modeling and simulating the resistance data. The small activation energy and remarkable diffusion kinetics highlighted the applicability as on-board hydrogen storage systems.  相似文献   

15.
In the present work, nanocrystalline Mg2Ni with an average size of 20–50 nm was prepared via ball milling of a 2MgH2Ni powder followed by compression under a pressure of 280 MPa. The phase component, microstructure, and hydrogen sorption properties were characterized by using X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscope (TEM), pressure-composition-temperature (PCT) and synchronous thermal analyses (DSC/TG). Compared to the non-compressed 2MgH2Ni powder, the compressed 2MgH2Ni pellet shows lower dehydrogenation temperature (290 °C) and a single-phase Mg2Ni is obtained after hydrogen desorption. PCT measurements show that the nanocrystalline Mg2Ni obtained from dehydrogenated 2MgH2Ni pellet has a single step hydrogen absorption and desorption with fairly low absorption (?57.47 kJ/mol H2) and desorption (61.26 kJ/mol H2) enthalpies. It has very fast hydrogen absorption kinetics at 375 °C with about 3.44 wt% hydrogen absorbed in less than 5 min. The results gathered in this study show that ball milling followed by compression is an efficient method to produce Mg-based ternary hydrides.  相似文献   

16.
17.
We evaluate the hydrogen adsorption behavior of the pristine single-layer graphene sheets in a powder form, which was performed at cryogenic and room temperatures. Only 0.4 wt.% and <0.2 wt.% hydrogen uptake was obtained at 77 K under 100 kPa and room temperature under 6 MPa, respectively, for the pristine graphene sample with a BET specific surface area of 156 m2 g−1. Structure/property investigations suggest that the low specific surface area and weak binding to hydrogen should be responsible for the small gravimetric uptake of pristine graphene sample.  相似文献   

18.
To improve hydrogen desorption properties of MgH2, mechanical milling of MgH2 with low concentration (2 and 5%) of NaNH2 has been performed. Pre-milling of MgH2 for 10 h has been done and then six samples have been synthesised with different milling times from 15 to 60 min. Microstructural characterisation has been performed using X-ray diffraction (XRD), scanning electron microscopy (SEM) and laser scattering measurements (PSD), and correlated to desorption properties examined using Differential Scanning Calorimetry (DSC) and Hydrogen Sorption Analyser (HSA). Thermal analysis shows that desorption temperatures are shifted towards lower values. It also highlights the significance of milling time and additive concentration on desorption behaviour.  相似文献   

19.
The aim of this study is to enable high hydrogen production yield from catalytic methanolysis of ammonia borane (AB) in the presence of a cordierite type ceramic monolithic. The monolithic channel surfaces were coated with Al2O3 by wash-coating method and then this layer was impregnated with 1 wt%Pd-2 wt%Co bimetallic catalyst. SEM-EDX and multi-point BET analysis were used in order to characterize the catalyst. The experimental studies were conducted in a continuous flow type reactor, which was used for the first time in this study. The reactions were carried on low temperature (40 °C), and with various AB feed concentrations and flow rates. It was found that the highest hydrogen production yield (88.5%) was obtained from AB flow rate of 3.3 mL/min, and AB feed concentration of 0.1 wt%. It was concluded that Pd-Co/Al2O3 coated monolithic, which is a stable, active and low-cost catalyst, was a very promising catalyst for on-board hydrogen production from the methanolysis of ammonia borane.  相似文献   

20.
The structure, hydrogen storage and electrochemical properties of annealed low-Co AB5-type intermetallic compounds have been investigated. La-alloy, Nd-alloy and Cr-alloy are used to represent La0.8Ce0.2Ni4Co0.4Mn0.3Al0.3, La0.6Ce0.2Nd0.2Ni4Co0.4Mn0.3Al0.3 and La0.6Ce0.2Nd0.2Ni3.8Co0.4Mn0.3Al0.3Cr0.2, respectively. The XRD results indicated that annealed samples are all single-phase alloys with CaCu5 type structure. The maximum of both hydrogen content and discharge capacity is obtained for La-alloy 1.23 wt%H2 and 321.1 mA h/g, respectively. All the investigated alloys are quiet stable with ΔH of hydrogen desorption about 36–38 kJ/mol H2. Cycle life of alloy electrode has been improved by partial substitution of La for Nd and Ni for Cr. The highest capacity retention of 92.2% after 100 charge/discharge cycles at 1C has been observed for Nd-alloy. The hydrogen diffusion coefficient measured by PITT is higher at the start of charging process and dramatically reduces by 2–3 order of magnitude with saturation of β-hydride. The highest value 6.9 × 10?13 cm2/s is observed for La alloy at 100% SOC. Partial substitution La for Nd and Cr for Ni in low-Co AB5 metal hydride alloys slightly reduces maximum discharge capacity, HRD performance and hydrogen diffusion kinetics. Low-Co alloys show good overall electrochemical properties compared to high-Co alloys and might be perspective materials for various electrochemical applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号