首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Guidance on Sensor Placement was identified as the top research priority for hydrogen sensors at the 2018 HySafe Research Priority Workshop on hydrogen safety in the category Mitigation, Sensors, Hazard Prevention, and Risk Reduction. This paper discusses the initial steps (Phase 1) to develop such guidance for mechanically ventilated enclosures. This work was initiated as an international collaborative effort to respond to emerging market needs related to the design and deployment equipment for hydrogen infrastructure that is often installed in individual equipment cabinets or ventilated enclosures. The ultimate objective of this effort is to develop guidance for an optimal sensor placement such that, when integrated into a facility design and operation, will allow earlier detection at lower levels of incipient leaks, leading to significant hazard reduction. Reliable and consistent early warning of hydrogen leaks will allow for the risk mitigation by reducing or even eliminating the probability of escalation of small leaks into large and uncontrolled events. To address this issue, a study of a real-world mechanically ventilated enclosure containing GH2 equipment was conducted, where CFD modeling of the hydrogen dispersion (performed by AVT and UQTR, and independently by the JRC) was validated by the NREL Sensor laboratory using a Hydrogen Wide Area Monitor (HyWAM) consisting of a 10-point gas and temperature measurement analyzer. In the release test, helium was used as a hydrogen surrogate. Expansion of indoor releases to other larger facilities (including parking structures, vehicle maintenance facilities and potentially tunnels) and incorporation into QRA tools, such as HyRAM is planned for Phase 2. It is anticipated that results of this work will be used to inform national and international standards such as NFPA 2 Hydrogen Technologies Code, Canadian Hydrogen Installation Code (CHIC) and relevant ISO/TC 197 and CEN documents.  相似文献   

2.
For the general public to use hydrogen as a vehicle fuel, they must be able to handle hydrogen with the same degree of confidence as conventional liquid and gaseous fuels. For refuelling hydrogen cars, hydrogen is stored at high pressures up to 700 bar. The hazards associated with jet releases from accidental leaks of such highly pressurized storage must be considered since a jet release and dispersion can result in a fire or explosion. Therefore, it is essential to understand the dispersion characteristics of hydrogen to determine the extent of the flammable cloud when released from a high-pressure source. These parameters are very important in the establishment of the safety distances and sizes of hazardous zones. This paper describes the work done by us in modelling of dispersion of accidental releases of hydrogen, using the FRED (Fire Explosion Release Dispersion) software. The dispersion module in FRED is validated against experimental data available in the open literature for steady release and dispersion of cold and ambient hydrogen gas. The validation is performed for a wide range of hole sizes (0.5–4 mm), pressure (1.7–400 bar) and temperature (50–298 K).The model predictions of hydrogen gas jet velocity, concentration decay as a function of distance as well as radial concentration distribution are in good agreement with experiments. Overall, it is concluded that FRED can accurately model accidental release and dispersion of hydrogen in unconfined and open configurations.  相似文献   

3.
The use of hydrogen as a fuel should always be accompanied by a safety assessment concerning the case of an accidental release. To evaluate the potential hazards in a spill accident both experiments and simulations are performed. In the present work, the CFD code, ADREA-HF, is used to simulate the liquefied hydrogen (LH2) spill experiments (test 5, 6, 7) conducted by the Health Safety Laboratory (HSL). Two horizontal releases, the one along the ground and the other one at a distance above the ground, and one vertical release are examined with spill rate 60 lt/min. The main focus of this study is on the presence of humidity in the atmosphere and its effect on the vapor dispersion. When humidity is present is cooled, condenses and freezes due to the low prevailing temperature (∼20 K near the release), and releases heat. In addition, during the release hydrogen droplets are formed due to mechanical and flashing break up, and water droplets and ice crystals due to humidity phase change. Therefore, two models are tested: the hydrodynamic equilibrium model, which assumes that the phases are in thermodynamic and kinematic equilibrium and the non hydrodynamic equilibrium model (slip model), which assumed that the phases are in thermodynamic equilibrium but they can obtain different velocities. The fluctuating wind direction was also taken into account, since it greatly affects the hydrogen dispersion. The computational results are compared with the experimental measurements, and it is concluded that humidity along with the slip effect influences the buoyancy of the cloud to a great extent. The best simulation case (humidity and slip effect) is consistent with the experiment for all three tests for the majority of the sensors.  相似文献   

4.
The number of maritime initiatives with hydrogen as alternative fuel is increasing. While most of the early projects aim at using compressed hydrogen the use of liquid hydrogen (LH2) is more practical and is expected to become more attractive for implementation on larger vessels due to more efficient storage, bunkering and handling of the fuel. In the industry there seems to be some confusion regarding the behavior of LH2 releases, in particular whether a release into air will behave like a dense gas or a buoyant gas. The understanding of this aspect is critical to optimize design with regard to safety. This article will explain the expected behavior of LH2 releases and discuss expected hazard distances from LH2 releases relative to gaseous hydrogen releases and LNG. Some other safety concerns of LH2, like indoor releases, releases from vent masts, potential BLEVEs and RPTs are also discussed. The article explains why a higher safety standard may be required when designing hydrogen fueled vessels than for existing LNG fueled vessels.  相似文献   

5.
In this article, the independent testing and validation of a packaged, electrochemical prototype hydrogen sensor at the National Renewable Energy Laboratory (NREL) is reported. Custom electronics were developed to be compatible with the data acquisition system at NREL. The specialized hydrogen sensor-testing laboratory at NREL used a variety of standardized test protocols to assess sensor performance. The system controlled and monitored humidity, pressure, and hydrogen gas concentration and introduced interference gases such as methane, carbon dioxide, carbon monoxide and ammonia.  相似文献   

6.
Liquid hydrogen (LH2) storage is viewed as a viable approach to assure sufficient hydrogen capacity at commercial fuelling stations. Presently, LH2 is produced at remote facilities and then transported to the end-use site by road vehicles (i.e., LH2 tanker trucks). Venting of hydrogen to depressurize the transport storage tank is a routine part of the LH2 delivery and site transfer process. The behavior of cold hydrogen plumes has not been well characterized because of the sparsity of empirical field data, which can lead to overly conservative safety requirements. Committee members of the National Fire Protection Association (NFPA) Standard 2 [1] formed the Hydrogen Storage Safety Task Group, which consists of hydrogen producers, safety experts, and computational fluid dynamics modellers, has identified the lack of understanding of hydrogen dispersion during LH2 venting of storage vessels as a critical gap for establishing safety distances at LH2 facilities, especially commercial hydrogen fuelling stations. To address this need, the National Renewable Energy Laboratory Sensor Laboratory, in collaboration with the NFPA Hydrogen Storage Task Group, developed a prototype Cold Hydrogen Plume Analyzer to empirically characterize the hydrogen plume formed during LH2 storage tank venting. The prototype analyzer was field deployed during an actual LH2 venting process. Critical findings included:
  • •Hydrogen above the lower flammable limit (LFL) was detected as much as 2 m lower than the release point, which is not predicted by existing models.
  • •Personal monitors detected hydrogen at ground level, although at levels below the LFL.
  • •A small but inconsistent correlation was found between oxygen depletion and the hydrogen concentration.
  • •A negligible to non-existent correlation was found between in-situ temperature measurements and the hydrogen concentration.
The prototype analyzer is being upgraded for enhanced metrological capabilities, including improved real-time spatial and temporal profiling of hydrogen plumes and tracking of prevailing weather conditions. Additional deployments are planned to monitor plume behavior under different wind, humidity, and temperature conditions. The data will be shared with the Hydrogen Storage Task Group and ultimately will be used support theoretical models and code requirements prescribed in NFPA 2.  相似文献   

7.
The study of compressed hydrogen releases from high-pressure storage systems has practical application for hydrogen and fuel cell technologies. Such releases may occur either due to accidental damage to a storage tank, connecting piping, or due to failure of a pressure release device (PRD). Understanding hydrogen behavior during and after the unintended release from a high-pressure storage device is important for development of appropriate hydrogen safety codes and standards and for the evaluation of risk mitigation requirements and technologies. In this paper, the natural and forced mixing and dispersion of hydrogen released from a high-pressure tank into a partially enclosed compartment is investigated using analytical models. Simple models are developed to estimate the volumetric flow rate through a choked nozzle of a high-pressure tank. The hydrogen released in the compartment is vented through buoyancy induced flow or through forced ventilation. The model is useful in understanding the important physical processes involved during the release and dispersion of hydrogen from a high-pressure tank into a compartment with vents at multiple levels. Parametric studies are presented to identify the relative importance of various parameters such as diameter of the release port and air changes per hour (ACH) characteristic of the enclosure. Compartment overpressure as a function of the size of the release port is predicted. Conditions that can lead to major damage of the compartment due to overpressure are identified. Results of the analytical model indicate that the fastest way to reduce flammable levels of hydrogen concentration in a compartment is by blowing through the vents. Model predictions for forced ventilation are presented which show that it is feasible to effectively and rapidly reduce the flammable concentration of hydrogen in the compartment following the release of hydrogen from a high-pressure tank.  相似文献   

8.
As hydrogen-air mixtures are flammable in a wide range of concentrations and the minimum ignition energy is low compared to hydrocarbon fuels, the safe handling of hydrogen is of utmost importance. Additional hazards may arise with the accidental spill of liquid hydrogen. Such a release of LH2 leads to a formation of a cryogenic pool, a dynamic vaporization process, and consequently a dispersion of gaseous hydrogen into the environment. Several LH2 release experiments as well as modeling approaches address this phenomenology. In contrast to existing approaches a new CFD model capable of simulating liquid and gaseous distribution was developed at Forschungszentrum Jülich. It is validated against existing experiments and yields no substantial lacks in the physical model and reveals a qualitatively consistent prediction. Nevertheless, the deviation between experiment and simulation raises questions on the completeness of the database, in particular with regard to the boundary conditions and available measurements.  相似文献   

9.
A computational fluid dynamics (CFD) approach using the standard k-ε turbulence model was applied to simulate hydrogen and methane dispersion around a cubical building. Model results were compared against towing-tank data and other numerical results. The relative impact between hydrogen and methane releases on the building and its surroundings under several stable atmospheric stratifications was assessed. The computed dispersion patterns show a greater risk potential of hydrogen in comparison to methane when released in the vicinity of a building. However, since hydrogen rapidly rises, the impact of a release on the surrounding buildings promptly diminishes. The results also depict complex interactions of hydrogen dispersion patterns due to strong buoyant forces.  相似文献   

10.
In order for fuel cell vehicles to develop a widespread role in society, it is essential that hydrogen refuelling stations become established. For this to happen, there is a need to demonstrate the safety of the refuelling stations. The work described in this paper was carried out to provide experimental information on hydrogen outflow, dispersion and explosion behaviour. In the first phase, homogeneous hydrogen–air mixtures of a known concentration were introduced into an explosion chamber and the resulting flame speed and overpressures were measured. Hydrogen concentration was the dominant factor influencing the flame speed and overpressure. Secondly, high-pressure hydrogen releases were initiated in a storage room to study the accumulation of hydrogen. For a steady release with a constant driving pressure, the hydrogen concentration varied as the inlet airflow changed, depending on the ventilation area of the room, the external wind conditions and also the buoyancy induced flows generated by the accumulating hydrogen. Having obtained this basic data, the realistic dispersion and explosion experiments were executed at full-scale in the hydrogen station model. High-pressure hydrogen was released from 0.8 to 8.0 mm nozzle at the dispenser position and inside the storage room in the full-scale model of the refuelling station. Also the hydrogen releases were ignited to study the overpressures that can be generated by such releases. The results showed that overpressures that were generated following releases at the dispenser location had a clear correlation with the time of ignition, distance from ignition point.  相似文献   

11.
The higher rate of component failure and downtime during initial operation in hydrogen stations is not well understood. The National Renewable Energy Laboratory (NREL) has been collecting failed components from retail and research hydrogen fueling stations in California and Colorado and analyzing them using an optical zoom and scanning electron microscope. The results show stainless steel metal particulate contamination. While it is difficult to definitively know the origin of the contaminants, a possible source of the metal particulates is improper tube cleaning practices. To understand the impact of different cleaning procedures, NREL performed an experiment to quantify the particulates introduced from newly cut tubes. The process of tube cutting, threading and beveling, which is performed most often during station fabrication, is shown to introduce metal contaminants and thus is an area that could benefit from improved cleaning practices. This paper shows how these particulates can be reduced, which could prevent station downtime and costly repair. These results are from the initial phase of a project in which NREL intends to further investigate the sources of particulate contamination in hydrogen stations.  相似文献   

12.
Application of the CFD methodology for risk assessment of hydrogen applications and associated support of regulation, codes and standards has been growing its momentum during the last years. The CFD tools applied should prove to be “adequately” validated for hydrogen applications. This contribution focuses on the hydrogen related validation work performed with the CFD code ADREA-HF. The code is a three dimensional transient fully compressible flow and dispersion CFD solver, able to treat highly complex geometries using the porosity formulation on Cartesian grids. The ADREA-HF validation effort was performed within various EC co-funded projects (EIHP, EIHP-2, HyApproval, HyPer, HySafe). Various types of hydrogen release scenarios were considered, including gaseous and liquefied releases, open, semi-confined and confined environments, sonic (under-expanded) and low momentum releases. In parallel to its validation the ADREA-HF code has been extensively used for regulations, codes and standards support.  相似文献   

13.
The introduction of hydrogen to the commercial market as alternative fuel brings up safety concerns. Its storage in liquid or cryo-compressed state to achieve volumetric efficiency involves additional risks and their study is crucial. This work aims to investigate the behavior of cryogenic hydrogen release and to study factors that affect the vapor dispersion. We focus on the effect of ambient humidity and air's components (nitrogen and oxygen) freezing, in order to identify the conditions under which these factors have considerable influence. The study reveals that the level of influence depends highly on the release conditions and that humidity can reduce conspicuously the longitudinal distance of the Lower Flammability Limit (LFL). Low Froude (Fr) number (<1000) at the release allows the generated by the humidity phase change buoyancy to affect the dispersion, while for higher Fr number - that usually are met in cryo-compressed releases - the momentum forces are the dominant forces and the buoyancy effect is trivial. Simulations with liquid methane release have been also performed and compared to the liquid hydrogen simulations, in order to detect the differences in the behavior of the two fuels as far as the humidity effect is concerned. It is shown that in methane spills the buoyancy effect in presence of humidity is smaller than in hydrogen spills and it can be considered almost negligible.  相似文献   

14.
15.
The paper evaluates the role of the bio-fuels production in the transportation sector in the world, for programs of greenhouse gases emissions reductions and sustainable environmental performance. Depending on the methodology used to account for the local pollutant emissions and the global greenhouse gases emissions during the production and consumption of both the fossil and bio-fuels, the results can show huge differences. If it is taken into account a life cycle inventory approach to compare the different fuel sources, these results can present controversies. A comparison study involving the American oil diesel and soybean diesel developed by the National Renewable Energy Laboratory presents CO2 emissions for the bio-diesel which are almost 20% of the emissions for the oil diesel: 136 g CO2/bhp-h for the bio-diesel from soybean and 633 g CO2/bhp-h for the oil diesel [National Renewable Energy Laboratory—NREL/SR-580-24089]. Besides that, important local environmental impacts can also make a big difference. The water consumption in the soybean production is much larger in comparison with the water consumption for the diesel production [National Renewable Energy Laboratory—NREL/SR-580-24089]. Brazil has an important role to play in this scenario because of its large experience in bio-fuels production since the seventies, and the country has conditions to produce bio-fuels for attending great part of the world demand in a sustainable pathway.  相似文献   

16.
We present a unique evaluation of three advanced high throughput pretreatment and enzymatic hydrolysis systems (HTPH-systems) for screening of lignocellulosic biomass for enzymatic saccharification. Straw from 20 cultivars of winter wheat from two sites in Denmark was hydrothermally pretreated and enzymatically processed in each of the separately engineered HTPH-systems at 1) University of California, Riverside, 2) National Renewable Energy Laboratory (NREL), Colorado, and 3) University of Copenhagen (CPH). All three systems were able to detect significant differences between the cultivars in the release of fermentable sugars, with average cellulose conversions of 57%, 64%, and 71% from Riverside, NREL and CPH, respectively. The best correlation of glucose yields was found between the Riverside and NREL systems (R2 = 0.2139), and the best correlation for xylose yields was found between Riverside and CPH (R2 = 0.4269). All three systems identified Flair as the highest yielding cultivar and Dinosor, Glasgow, and Robigus as low yielding cultivars. Despite different conditions in the three HTPH-systems, the approach of microscale screening for phenotypically less recalcitrant feedstock seems sufficiently robust to be used as a generic analytical platform.  相似文献   

17.
If the 'Hydrogen Economy' is to progress, more hydrogen fuelling stations are required. In the short term and in the absence of a hydrogen distribution network, these fuelling stations will have to be supplied by liquid hydrogen (LH2) road tankers. Such a development will increase the number of tanker offloading operations significantly and these may need to be performed in close proximity to the general public.The aim of this work was to determine the hazards and severity of a realistic ignited spill of LH2 focussing on; flammability limits of an LH2 vapour cloud, flame speeds through an LH2 vapour cloud and subsequent radiative heat levels after ignition. The experimental findings presented are split into three phenomena; jet-fires in high and low wind conditions, 'burn-back' of ignited clouds and secondary explosions7 post 'burn-back'. An attempt was made to estimate the magnitude of an explosion that occurred during one of the releases. The resulting data were used to propose safety distances for LH2 offloading facilities which will help to update and develop guidance for codes and standards.  相似文献   

18.
Front Cover     
A major barrier to the deployment of wind energy in many regions of the world is a lack of reliable and detailed wind resource data. Availability of this data is essential for government and industry to identify wind power generation potential and to act on that knowledge. To overcome this barrier, The US National Renewable Energy Laboratory (NREL) has developed new methods to more accurately assess the wind resource and produce detailed high-resolution (1 km/sup 2/) wind maps for essentially anywhere in the world. These advancements were made possible by a combination of factors, such as the release of global climatic and terrain data sets that were not previously available along with the availability of advanced tools, including geographic information systems (GIS) software and computational modeling techniques. The NREL methodology for creating regional wind resource maps integrates the global terrain and climatic data sets, GIS technology, and analytical and computational modeling techniques. As a result, updated wind assessments can now be produced with much greater accuracy and detail than was previously possible.  相似文献   

19.
The accidental releases of hydrogen from liquid storage and the subsequent consequences are studied from a harm perspective rather than a standpoint of risk. The cold, thermal and overpressure effects from hydrogen cold cloud, fireball, jet fire, flash fire, and vapor cloud explosion are evaluated in terms of two kinds of effect distances based on lethal and harmful criteria. Results show that for instantaneous release, the sequence of effect distances is vapor cloud explosion > flash fire > cold cloud > fireball, and for continuous release, the sequence is vapor cloud explosion > flash fire > jet fire > cold cloud. An overall comparison between instantaneous and continuous release reveals that the catastrophic rupture, rather than leakages, is the dominant event. Besides, the effect distances of liquid hydrogen tank are compared with those of 70 MPa gaseous storage with equivalent mass. Compared with 70 MPa gaseous storage, the liquid hydrogen storage may be safer under leak scenarios but more dangerous under catastrophic rupture scenario.  相似文献   

20.
We report modeling results for hydrogen releases associated with deploying hydrogen fuel cell technology on vessels. This first paper (I) considers hydrogen releases through the vessel Vent Mast from 250-bar hydrogen gas storage tanks, the type of tanks being used for the first hydrogen vessels. A manifolded 10-tank hydrogen storage system, holding 278 kg of hydrogen, can be emptied in ~10 min for maintenance purposes, with a pressure reduction to half the original pressure (125 bar) realized in 2 min if a rapid pressure reduction is needed, for example in the event of a fire. The time profile for filling a tank is also of interest so as not to exceed the tank thermal limits. The calculations show that a manifolded 10-tank array can be filled with hydrogen to 250-bar pressure in ~2 h from a 350-bar hydrogen refueling trailer without exceeding the 85 °C temperature limit typical of Type IV hydrogen tanks.Computational fluid dynamic (CFD) modeling shows that when the hydrogen is released out of the 10-tank array and into the Vent Mast in a 5-mph wind blowing horizontally, the effect of the wind on the hydrogen dispersion strongly depends on the hydrogen exit speed. For high release speeds (~800–900 m/s), the hydrogen flow is strongly momentum-driven, and there is modest cross-wind influence. For low hydrogen exit speeds (~10 m/s), the hydrogen is readily entrained in the wind flow and blown sideways, with the downstream flammable envelope rising at a positive angle to the horizontal due to buoyancy. To capture the influence of a wind with a downward component (e.g., created by a downdraft near a building), a calculation of a low-velocity (8.6 m/s) hydrogen release was performed with a 5-mph wind pointed downward at a 45° angle. The results show that despite the buoyancy of hydrogen, the wind blows the hydrogen substantially downward for low hydrogen speeds exiting the Vent Mast.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号