首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The poly(2-aminoethyl methacrylate) (p(AEM)) microgels were synthesized by microemulsion polymerization technique and used for in situ metal nanoparticle preparation to render as p(AEM)-M (M: Co or Ni) microgel composites and were used in p(AEM) based poly ionic liquid (PIL) microgels. Next, these p(AEM)) based microgel materials were used as catalysts for hydrogen (H2) production from both hydrolysis and methanolysis reactions of sodium borohydride (NaBH4). It was found that the catalytic hydrolysis of the NaBH4 reaction, catalyzed by p(AEM)-Co microgel composite was completed in 140 min, whereas the methanolysis of NaBH4 methanolysis catalyzed by the PIL of p(AEM)+Cl microgels was completed in 5 min both with 250 ± 2 mL H2 production. Furthermore, p(AEM)-Co microgel composite catalysts maintained 80% catalytic activity after 5 consecutive uses in NaBH4 hydrolysis. On the other hand, p(AEM)+Cl microgels were found to afford more than 50% catalytic activity even after 20 repetitive use in NaBH4 methanolysis due to superior regeneration ability. Moreover, activation energy values for p(AEM)-Co microgel composites catalyzed NaBH4 hydrolysis reaction were calculated as 38.9 kJ/mol in comparison to 37.3 kJ/mol activation energy of p(AEM)+Cl microgel catalyzed methanolysis reaction.  相似文献   

2.
Here, the oxygen(O) and nitrogen(N) doped metal-free carbon synthesis including potassium hydroxide (KOH) activation of Spirulina Platensis microalgae, followed by nitric acid (HNO3) activation is reported for the first time. Oxygen and nitrogen-doped metal-free catalysts were investigated for efficient hydrogen (H2) production from methanolysis of sodium borohydride (NaBH4). Compared to the catalyst obtained with the KOH activation, the catalytic activity for O and N doped metal-free showed about a four-fold improvement. The catalysts were analysed by scanning electron microscope (SEM), X-ray photoelectron spectroscopy (XPS), X-ray diffractometer (XRD), nitrogen adsorption, elemental analysis and Fourier-transform infrared spectroscopy (FTIR). The effects of temperature, NaBH4 amounts, catalyst loading and reusability experiments on the catalytic performance of obtained metal-free catalysts by H2 release from NaBH4 methanolysis were performed. This study can provide a new alternative strategy to produce specific metal-free carbon catalysts doped heteroatom for environmentally friendly conversion to produce H2 efficiently.  相似文献   

3.
Micrometer sized carbon spheres (CSs) are prepared in a single step using lactose precursor via hydrothermal method. These CSs are chemically modified with 3-chloro-2-hydroxypropyl ammonium chloride (CHPACl) and triethylenetetramine (TETA) to generate amine groups on the particle surface. Modified CSs with TETA was protonated with HCl as CSs-TETA-HCl that the zeta potential is increased to +40.3 ± 0.70 from ?51.4 ± 4.66 mV. The catalytic performance of CSs are tested as catalysts in the methanolysis of NaBH4, and the best catalytic performance as 2586 mL min?1 g?1 hydrogen generation rate (HGR) was obtained by CSs-TETA-HCl catalyst at 298 K as metal free catalyst. Furthermore, various parameters such as the amount of NaBH4, the reaction temperature, and the reusability of CSs-TETA-HCl particles are investigated. More importantly, relatively low activation energy, 23.82 kJ mol?1 for CSs-TETA-HCl catalyzed NaBH4 methanolysis reaction is obtained in comparison to metal nanoparticle and metal free catalysts reported for the same purpose in the literature.  相似文献   

4.
The polyethyleneimine (PEI) microgels prepared via microemulsion polymerization are protonated by hydrochloric acid treatment (p‐PEI) and quaternized (q‐PEI) via modification reaction with methyl iodide and with bromo alkanes of different alkyl chain lengths such as 1‐bromoethane, 1‐bromobutane, 1‐bromohexane, and 1‐bromooctane. The bare p‐PEI and q‐PEI microgels are used as catalysts directly without any metal nanoparticles for the methanolysis reaction of sodium borohydride (NaBH4). Various parameters such as the protonation/quaternization reaction on PEI microgels, the amount of catalyst, the amount of NaBH4, and temperature are investigated for their effects on the hydrogen (H2) production rate. The reaction of self‐methanolysis of NaBH4 finishes in about 32.5 min, whereas the bare PEI microgel as catalyst finishes the methanolysis of NaBH4 in 22 min. Surprisingly, it is found that when the protonated PEI microgels are used as catalyst, the same methanolysis of NaBH4 is finished in 1.5 min. The highest H2 generation rate value is observed for protonated PEI microgels (10 mg) with 8013 mL of H2/(g of catalyst.min) for the methanolysis of NaBH4. Moreover, activation parameters are also calculated with activation energy value of 23.7 kJ/mol, enthalpy 20.9 kJ/mol, and entropy ?158 J/K.mol. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

5.
A simple, fast, economic and environmental friendly method has been developed for the preparation of high active metal nanoparticles (MNPs) in the cellulose microfibers of cotton (CFC). The CFCs are kept in aqueous solutions of metal salts to adsorb metal ions. The CFC templated with metal ions are then treated with aqueous solution of NaBH4 for the reduction of metal ions into nano zero-valent metal nanoparticles (nZV-MNPs). The CFC loaded with nZV-MNPs are characterized by XRD, XPS, ATR-FTIR and FE-SEM, which indicates the successful synthesis of nZV-MNPs over the surface of CFC (M@CFC). The M@CFC are utilized as an efficient catalyst for the hydrogen generation from the methanolysis/hydrolysis of NaBH4. The Cu@CFC showed better catalytic performance for the hydrolysis of NaBH4, whereas Ag@CFC catalytic performance were much better than the other loaded MNPs for the methanolysis reaction of NaBH4. Effects of different parameters, which affecting the H2 generation, like type of MNPs, amount of the catalyst, amount of NaBH4, temperature and addition of chitosan (CH) polymer are also investigated. A very low activation energy (Ea), approximately 20.11 ± 0.12 kJ mol?1 for methanolysis reaction of NaBH4 is calculated at temperature range 22–40 °C. Besides, a very high H2 generation obtained in presence of 10, 50, or 100 μL CH solution (2 wt% CH in 20% v/v aqueous acetic acid) in addition to 50 mg of Ag@CFC catalyst at 22 °C and 1000 rpm. Moreover, the reusability of the catalyst is performed and found no decrease in percent conversion, whereas percent activity decreases 35% after four cycles.  相似文献   

6.
Polymeric microgels were prepared from dextran (Dex) by crosslinking linear natural polymer dextran with divinyl sulfone (DVS) with a surfactant-free emulsion technique resulting in high gravimetric yield of 78.5 ± 5.3% with wide size distribution. Dex microgels were chemically modified, and then used as catalyst in the methanolysis of NaBH4 to produce H2. The chemical modification of Dex microgel was done on epichlorohydrin (ECH)-reacted Dex microgels with ethylenediamine (EDA), diethylenetriamine (DETA), and triethylenetetraamine (TETA) in dimethylformamide (DMF) at 90°C for 12 hours. The modified dextran-TETA microgels were protonated using treatment with hydrochloric acid (HCl) and m-Dex microgels-TETA-HCl was found to be a very efficient catalyst for methanolysis of NaBH4 to produce H2. The effects of reaction temperature and NaBH4 concentration on H2 generation rates were investigated and m-Dex microgels-TETA-HCl catalyst possessed excellent catalytic performances with 100% conversion and 80% activity at end of 10 consecutive uses and was highly re-generatable with simple HCl treatment. Interestingly, m-Dex microgels-TETA-HCl catalyst can catalyze NaBH4 methanolysis reaction in a mild temperature range 0 to 35°C with Ea value of 30.72 kJ/mol and in subzero temperature range, −20 to 0°C with Ea value of 32.87 kJ/mol, which is comparable with many catalysts reported in the literature.  相似文献   

7.
Cobalt-boron (CoB) catalyst supported on zeolite modified with hydrochloric acid (CoB-zeolite-HCl) and zeolite modified with acetic acid (CoB-zeolite-CH3COOH) is prepared for the hydrogen (H2) release from sodium borohydride (NaBH4). The supported catalyst samples were characterized by X-ray diffraction spectroscopy (XRD), scanning electron microscope (SEM), Fourier transforms infrared spectroscopy (FTIR), nitrogen adsorption and, inductively coupled plasma optical emission spectroscopy (ICP-OES). The effects of Co metal loading, NaBH4 concentration, NaOH concentration, temperature, and reusability on the catalytic performance of the CoB-zeolite-HCl catalyst were investigated. The completion time of the reaction using the raw zeolite supported CoB catalyst was about 265 min. However, the completion time of the reaction using the CoB-zeolite-HCl catalyst was decreased to about 80 min. BET surface area values showed that there is a 7-fold increase in the specific surface area for the zeolite activated with HCl compared to the BET surface area for the raw zeolite. The activation energy (Ea) of the catalyzed reaction was 42.45 kJ mol−1.  相似文献   

8.
Poly[2-(dimethylamino)ethyl methacrylate] cryogel beads were prepared under cryogenic conditions via free radical polymerization and used as a catalyst in the production hydrogen (H2) from NaBH4 by alcoholysis. The efficiency of the catalyst was investigated in the range of 0–40 °C by both methanolysis and ethylene glycolysis reactions, and its reuse was tested. Accordingly, it was observed that the methanolysis reaction was faster than the ethylene glycolysis reaction. When the hydrogen generation rate (HGR) values between 0 and 40 °C were compared, it was concluded that the methanolysis reaction rate increased from 1550 to 4800 mL.min−1g−1 and the ethylene glycolysis reaction rate increased from 923 to 3551 mL.min−1g−1. In the alcoholysis reaction catalyzed by PDMA cryogel beads, the activation energy was calculated as 19.34 and 22.77 kJ.mol−1 for the methanolysis and ethylene glycolysis reactions, respectively. After six repetitions, the catalyst activity was calculated over 50% for NaBH4 methanolysis and ethylene glycolysis.  相似文献   

9.
A novel ploy(Enteromorpha-g-acrylic acid) p(EP-g-AA) hydrogel was synthesized and used as a template to prepare Cu and Ni nanoparticles. Then the hydrogel-metal nanoparticles (hydrogel-M (M: Cu, Ni)) were employed as catalyst in the generation of hydrogen from the hydrolysis of NaBH4. X-ray photoelectron spectroscopy (XPS), Fourier Transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), energy-dispersive X-ray spectrometer (EDS) and X-ray diffraction (XRD) were employed to determine the structure of p(EP-g-AA)-M (M: Cu, Ni) composite hydrogels. The effects of several parameters such as the amount of catalyst, initial concentration of NaBH4 and reaction temperature on the hydrolysis reaction were investigated. The kinetics of the hydrolysis reaction under different temperatures was also evaluated to determine the activation parameters. Experimental results showed that the catalytic efficiency of p(EP-g-AA)-Ni was much better than the catalytic efficiency of p(EP-g-AA)-Cu. And increasing the amount of catalyst and decreasing the NaBH4 concentration help to improve the reaction rate. Activation energy for the hydrolysis reaction was 42.61 kJ mol?1 catalyzed by p(EP-g-AA)-Cu and 39.10 kJ mol?1 by p(EP-g-AA)-Ni, respectively. At the end of five repetitive uses, p(EP-g-AA)-Cu composites possessed 64% activity and p(EP-g-AA)-Ni owned 70% activity. And after being stored for 30 days, p(EP-g-AA)-Cu and p(EP-g-AA)-Ni both remained 85% activity.  相似文献   

10.
This study aims to produce hydrogen (HG) from sodium borohydride (NaBH4) methanolysis using CuB, NiB or FeB catalysts prepared with a different support material including C. vulgaris microalgae strain modified using zinc chloride (CMS-ZnCl2). The NaBH4 concentration, metal percentage in the supported-catalyst, the optimal ZnCl2 percentage, and temperature effect on the NaBH4 methanolysis were investigated. X-ray photoelectron spectroscopy (XPS), X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), and Scanning electron microscopy (SEM) analysis were performed for the CMS-ZnCl2-CuB characterization. Also, the low activation energy (Ea) of 22.71 kJ mol−1 was found with the supported catalyst obtained. Under the same conditions, nearly 100% conversion was achieved in the reusability experiments repeated five times, but a gradual decrease in catalytic activity was observed after each use.  相似文献   

11.
Cellulose cotton fibers (CF) are coated with chitosan (CH) by simple, economic, and environmental friendly method. The CFs are kept in aqueous acetic acid solution to protonate the fibers before coated with CH solution (1.5% w/v in acetic acid aqueous solution (20% v/v)), represented as CF-A-CH. These materials are characterized by ATR-FTIR, XRD, FE-SEM and EDS which shows the successful coating of the CH on the CF surface. The prepared materials are exploited as an effective catalyst for the production of hydrogen (H2) from NaBH4 methanolysis reaction. In addition, other polymers (gelatin and agarose) and surfactants (brij-56, pluronic F-127 and urea) as well as CH in solution form are testified as catalyst for NaBH4 methanolysis reaction. High generation rate (8 times) and increase in amount of H2 (150 mL) is observe using only 50 μL CH solution. Furthermore, influences of various constraints, which affect the H2 production, like catalyst types, catalyst amount, NaBH4 amount, effect of temperature are also explored. A low activation energy (Ea), almost 14.41 ± 0.46 kJ mol−1 is calculated for NaBH4 methanolysis reaction in presence of CF-A-CH at temperature range 0 °C - 45 °C. Moreover, the catalyst reusability is also analyzed and no decline in percent conversion is found, whereas a little reduction in percent performance is detected after every cycle and only 18% lost is observed in its percent activity after completion of five successive cycles.  相似文献   

12.
Ru-Co nanoparticles prepared in nano-size by combustion derived of citric acid used sol-gel technique followed by calcination process at 450 °C. The external and internal properties of nano-sized catalyst were characterized by XRD, XPS, SEM, TEM, ICP-OES, and N2 sorption techniques. The characterization results proved that nano-sized catalyst was mixture of cubic Co3O4 (18 nm) and tetragonal RuO2 (40 nm) crystals with mesoporous structure (12.64 m2g-1). Insight into the role of solvents for enhancing hydrogen production from Ru-Co nanoparticles catalyzed sodium borohydride (NaBH4, SBH) was systematically studied by altering the dehydrogenation medium with water or methanol. The reaction kinetic performance of nano-sized catalyst was evaluated by performing both hydrogen generation reactions at various reaction temperatures, initial SBH concentration, and catalyst dosage to evaluate the hydrogen generation activity. Ru-Co nanoparticles exhibited exclusive catalytic performance for hydrogen generation by hydrolysis and methanolysis of SBH. The apparent activation energies (Ea) for the catalytic hydrolysis and methanolysis of SBH over Ru-Co nanoparticles were determined to be 20.02 kJ mol−1 and 54.38 kJ mol−1, respectively. Furthermore, Ru-Co nanoparticles also performed satisfied stability for both hydrolysis and methanolysis reactions. Beside both hydrogen generation was achived with fully conversion of SBH, Ru-Co nanoparticles promised good recyclability for at least 5 cycle for methanolysis of SBH.  相似文献   

13.
Generation of hydrogen by hydrolysis of alkali metal hydrides has attracted attention. Unsupported CoB catalyst demonstrated high activity for the catalytic hydrolysis of NaBH4 solution. However, unsupported CoB nanoparticles were easy to aggregate and difficult to reuse. To overcome these drawbacks, CoB/SiO2 was prepared and tested for this reaction. Cobalt (II) acetate precursor was loaded onto the SiO2 support by incipient-wetness impregnation method. After drying at 100 °C, Co cations were deposited on the support. The dried sample was then dispersed in methanol/water solution and then fully reduced by NaBH4 at room temperature. The catalyst was characterized by N2 sorption, XRD and XPS. The results indicated that the CoB on SiO2 possessed amorphous structure. B and Co existed both in elemental and oxidized states. SiO2 not only affected the surface compositions of CoB, but also affected the electronic states of Co and B. B0 could donate partial electron to Co0. The structure effect caused by the SiO2 support helped to prevent CoB nanocluster from aggregation and therefore the activity increased significantly on hydrolysis of alkaline NaBH4 solution. The CoB/SiO2 catalyst showed much higher activity than the unsupported CoB catalyst. At 298 K, the hydrogen generation rate on CoB/SiO2 catalyst was 4 times more than that on the unsupported CoB catalyst. The hydrogen generation rate was as high as 10,586 mL min−1 g−1 catalyst at 298 K. CoB/SiO2 is a very promising catalyst for this reaction.  相似文献   

14.
Polymeric catalysts have displayed great performance for catalytic hydrogen generation. However, the reported metal free polymeric catalysts for NaBH4 methanolysis are mainly limited to coating strategy where the catalytic activity fade after few cycles. Herein, we report an interpenetrating polymer network (IPN) strategy for rapid and highly recyclable NaBH4 catalytic methanolysis to produce hydrogen (H2) gas. In this study, we prepared poly(acrylic acid)/polysaccharide IPN via Pickering tempted polymerization. The hydrogen generation performance was studied employing different parameters where maximum HGR of 8182 mL H2 min?1 g?1 of CAP. The activation energy Ea, enthalpy and entropy were calculated to be 62.99 kJ mol?1, 32.25 kJ mol and ?130.92 J mol K?1, respectively. Above all, CAP kept cyclic performance to 100% even at the 7th cycle. We confirmed the reproducibility of approach with other natural polysaccharides. This was due to strong chain entanglement of IPN synthesis which forces the active sites to stay in place during cyclic catalysis reaction. Thus, the IPN strategy ensures longer catalyst life for catalytic methanolysis of NaBH4 for H2 generation.  相似文献   

15.
In this study, nitrogen (N) doped metal-free catalysts were obtained as a result of nitric acid (HNO3) activation of carbon sample (C–KOH–N), which was obtained based on Chlorella Vulgaris microalgae by KOH activation (C–KOH). These catalysts have been effectively used to produce hydrogen (H2) from the sodium borohydride (NaBH4) methanolysis reaction. Compared to the C–KOH catalyst, the catalytic activity for C–KOH–N showed a seven-fold improvement. Hydrogen generation rate (HGR) values obtained for the NaBH4 methanolysis reaction for C–KOH and C–KOH–N metal-free catalysts were 3250 and 20,100 mL min?1 g?1. The catalysts were characterized using various analytical techniques such as XPS, XRD, SEM, FTIR, BET, and elemental analysis. This work can provide a new alternative strategy to produce specific heteroatom-doped metal-free carbon catalysts for environmentally friendly conversion to produce H2 efficiently.  相似文献   

16.
Water beads made from polyacrylamide polymer p-(AAm) were decorated with high efficient metal nanoparticles by inexpensive, fast, simple, and environmental friendly method. These water beads balls were kept in the metal salt solutions for 4 h; to adsorb the metals ions from these aqueous solutions. The metal ions decorated on the p-(AAm) water beads were converted to metal nanoparticles by its reduction with aqueous solution of NaBH4. The prepared materials p-(AAm) loaded with MNPs (M@p-(AAm)) were characterized by ATR-FTIR, XRD, XPS, FESEM, and EDS which show the successful preparation of MNPs over the surface and within p-(AAm). Afterwards the M@p-(AAm) were investigated as a catalyst for the generation of hydrogen from the methanolysis of NaBH4. The Ag@p-(AAm) show good catalytic activity for NaBH4 methanolysis reaction as compared to the other loaded MNPs. In addition, different parameters which effecting H2 generation were also investigated such as; MNPs types, catalyst amount and temperature of the reaction. Low activation energy (Ea) of 21.37 ± 0.67 kJ mol−1, was calculated for NaBH4 methanolysis reaction at temperature ranging from 5.0 °C to 35 °C. Moreover, the catalyst reusability was also studied and found no decrease in percent conversion, however percent efficiency was decreases about 37% after completion of four cycles.  相似文献   

17.
In this research study, orange peel-based biocatalysts developed from different acid protonation were used as a metal-free catalyst for hydrogen production from sodium borohydride (NaBH4). In order to prepare the orange peel-based biocatalyst with higher catalytic activity, experiments were conducted with pure orange peel, different acid molar concentrations, and calcination temperatures. The physical morphology, surface texture, and chemical interaction were thoroughly analyzed by XRD, FTIR Raman, FESEM, BET, and TGA. As a result of the experiment, it was determined that the highly acid-treated biocatalyst (40% H3PO4, 40% H2SO4, 40% HCl) and calcinated at 450 °C for 1 h had higher catalytic activity. As a result, bio-hydrogen production at 35 °C and 70 °C methanolysis with 3% NaBH4 catalyzed by a mixture of acid-treated catalysts were found as 46,213 and 63,842 ml min−1g.cat−1, respectively. However, with the increase of molar concentration of biocatalyst with 40% individual acid prolonged samples, the HGR rates will not have a satisfactory value in comparison with the 40% mixture of the acid-treated catalyst due to less number of active sites.  相似文献   

18.
In this study, we report for the first time the use of C. Vulgaris microalgal strain containing cellulose in the modified form to be used as a catalyst support material for the production of hydrogen from the methanolysis reaction of sodium borohydride (NaBH4). Acetic acid, phosphoric acid, and hydrochloric acid (HCl) at different concentrations and impregnation times were used for the protonation of cellulose in the microalgal strain. The cobalt ions were added to this modified support material and, C.Vulgaris microalgal strain-supported Co-B catalyst was obtained. XRD, BET, FTIR, XPS, ICP-MS, TEM, and SEM-EDX analysis were carried out for characterization of the sample. The maximum hydrogen production rate from the methanolysis reaction of NaBH4 with this catalyst was 13215 ml min−1 gcat−1. In addition, the activation energy was determined as 25.22 kJ/mol. At the same time, re-usability studies of the microalgal strain-supported Co-B catalyst were performed and it was found that there was no decrease in the % conversion for this catalyst, while the activity decreased. XRD, BET, FTIR, XPS, ICP-MS, TEM, and SEM-EDX.  相似文献   

19.
In the study, metal-free boron and oxygen incorporated graphitic carbon nitride (B and O doped g-C3N4) with carbon vacancy was successfully prepared and applied as a catalyst to the dehydrogenation of sodium borohydride (NaBH4) in methanol for the first time. The hydrogen generation rate (HGR) value was found to be 11,600 mL min?1g?1 by NaBH4 of 2.5%. This is 2.53 times higher than the g-C3N4 catalyst without the addition of B and O. The obtained activation energy was 25.46 kJ mol?1. X-ray powder diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Scanning electron microscopy (SEM), energy dispersive X-Ray analyser (EDX), Transmission electron microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR) analyses for characterization were performed. A possible mechanism of H2 production from the reaction using metal-free B and O doped g-C3N4 catalyst with carbon vacancy has been proposed. This study showed that g-C3N4 and its composites with doping atoms can be used effectively in H2 production by NaBH4 methanolysis.  相似文献   

20.
The natural, most abundant sulfide mineral of pyrite was modified using polyethyleneimine (PEI) for use as a catalyst in H2 release reactions from NaBH4 in methanol. The catalytic performances of pyrite, pyrite-PEI, and protonated pyrite-PEI (pyrite-PEI+) were compared and the hydrogen generation rate (HGR) values of 795 ± 26, 2883 ± 190, and 4320 ± 188 mL H2/(g of catalyst x min)−1 were measured for H2 production from NaBH4 methanolysis. The effect of methanol:water mixture at various ratios, the amount of catalyst, the concentration of NaBH4, and temperature on H2 production from NaBH4 in methanol catalyzed by pyrite-PEI+ were investigated. The activation energies for pyrite-PEI, and pyrite-PEI+ catalyzed H2 release reactions were calculated as 47.2 and 36.8 kJ/mol, respectively. It was found that the activity % for the pyrite-PEI+ catalyst decreased to 76.2 ± 2.7% after five consecutive uses with 100% conversion for each re-use study. Furthermore, the re-generation of pyrite-PEI+ catalyst after the 5th usage was readily ensured by HCl treatment to completely recover and further increase the activity% of the catalyst. Therefore, pyrite was shown to be a useful re-generable and economic green catalyst for H2 production in many potential applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号