共查询到20条相似文献,搜索用时 15 毫秒
1.
Elliot Martin Susan A. Shaheen Timothy E. Lipman Jeffrey R. Lidicker 《International Journal of Hydrogen Energy》2009
Over the last several decades, hydrogen fuel cell vehicles (FCVs) have emerged as a zero tailpipe-emission alternative to the battery electric vehicle (EV). To address questions about consumer reaction to FCVs, this report presents the results of a “ride-and-drive” clinic series (N = 182) held in 2007 with a Mercedes-Benz A-Class “F-Cell” hydrogen FCV. The clinic evaluated participant reactions to driving and riding in an FCV, as well as vehicle refueling. Pre-and post-clinic surveys assessed consumer response. More than 80% left with a positive overall impression of hydrogen. The majority expressed a willingness to travel 5–10 min to find a hydrogen station. More than 90% of participants would consider an FCV driving range of 300 miles (480 km) to be acceptable. Stated willingness-to-pay preferences were explored. The results show that short-term exposure can improve consumer perceptions of hydrogen performance and safety among people who are the more likely early adopters. 相似文献
2.
W. Buttner C. Rivkin R. Burgess K. Hartmann I. Bloomfield M. Bubar M. Post L. Boon-Brett E. Weidner P. Moretto 《International Journal of Hydrogen Energy》2017,42(11):7664-7671
The United Nations Economic Commission for Europe Global Technical Regulation (GTR) Number 13 (Global Technical Regulation on Hydrogen and Fuel Cell Vehicles) is the defining document regulating safety requirements in hydrogen vehicles, and in particular, fuel cell electric vehicles (FCEVs). GTR Number 13 has been formally adopted and will serve as the basis for the national regulatory standards for FCEV safety in North America (led by the United States), Japan, Korea, and the European Union. The GTR defines safety requirements for these vehicles, including specifications on the allowable hydrogen levels in vehicle enclosures during in-use and post-crash conditions and on the allowable hydrogen emissions levels in vehicle exhaust during certain modes of normal operation. However, in order to be incorporated into national regulations, that is, to be legally binding, methods to verify compliance with the specific requirements must exist. In a collaborative program, the Sensor Laboratories at the National Renewable Energy Laboratory in the United States and the Joint Research Centre, Institute for Energy and Transport in the Netherlands have been evaluating and developing analytical methods that can be used to verify compliance with the hydrogen release requirements as specified in the GTR. 相似文献
3.
Reliable hydrogen fueling stations will be required for the successful commercialization of fuel cell vehicles. An evolving hydrogen fueling station has been in operation in Irvine, California since 2003, with nearly five years of operation in its current form. The usage of the station has increased from just 1000 kg dispensed in 2007 to over 8000 kg dispensed in 2011 due to greater numbers of fuel cell vehicles in the area. The station regularly operates beyond its design capacity of 25 kg/day and enables fuel cell vehicles to exceed future carbon reduction goals today. Current limitations include a cost of hydrogen of $15 per kg, net electrical consumption of 5 kWh per kg dispensed, and a need for faster back-to-back vehicle refueling. 相似文献
4.
Thanaporn Sriyakul Kittisak Jermsittiparsert 《International Journal of Hydrogen Energy》2021,46(2):1682-1693
The proposed autonomous hybrid charging station in this paper is energized by a photovoltaic (PV) system, which should provide electric vehicles (EVs), and water electrolyzer (WE) with electricity. The WE operates by using electricity to produce and store hydrogen to feed hydrogen vehicles (HVs). Moreover, a fuel cell (FC) is allocated to the system, which uses the stored hydrogen to regenerate electricity the PV system is beyond reach. A supplementary diesel generator is also installed in the charging station to avoid power shortage as a conservative measurement. The hydrogen and electric demand of the station is accompanied by uncertainties, which should be taken into account in designing the charging station. Therefore, information-gap decision theory (IGDT) is employed to deal with the uncertainties. This approach provides the investor with three different strategies of risk-averse strategy (RAS), risk-neutral strategy (RNS), and risk-seeker strategy (RSS), which can help the investor with making a better decision. The outcome of the simulation proved that in RAS if the investor decides to invest 13.9% more capital, based on the robustness function, the charging station withstands the 9.6% deviation of uncertain parameters’ fraction error. However, should the investor decide to take risks in the construction of the charging station, by paying 13.9% less, the system is 10.7% fragile to the information-gap of uncertainties. Besides, the rated power of the PV system reaches from 1612 kW in RNS to 1731 kW in RAS while it decreased to 1479 kW in RSS. 相似文献
5.
The present work features an analysis of the current state of Romania's current policy in the context of hydrogen economy. The possibilities and limitations concerning the transition towards the hydrogen economy in Romania are discussed taking into account a number of aspects, including: the degree of development of the electric power infrastructure, aspects from petrochemical and agrochemical industry, transport infrastructure, socioeconomic development indicators, activity and dynamics of the scientific community and attitude of central authorities. All these are important aspects that contribute to technology deployment. The article presents both advantages and disadvantages from Romania, provides concrete examples, gives information, makes comparisons and provides recommendations, taking into account national aspects. Key areas of promise for hydrogen technologies in Romania are identified. The paper concludes with recommendations for actions in order to begin the process of transition towards a hydrogen economy. 相似文献
6.
Shane D. Stephens-Romero Tim M. Brown Jee E. Kang Wilfred W. Recker G. Scott Samuelsen 《International Journal of Hydrogen Energy》2010
The introduction of hydrogen infrastructure and fuel cell vehicles (FCVs) to gradually replace gasoline internal combustion engine vehicles can provide environment and energy security benefits. The deployment of hydrogen fueling infrastructure to support the demonstration and commercialization of FCVs remains a critical barrier to transitioning to hydrogen as a transportation fuel. This study utilizes an engineering methodology referred to as the Spatially and Temporally Resolved Energy and Environment Tool (STREET) to demonstrate how systematic planning can optimize early investments in hydrogen infrastructure in a way that supports and encourages growth in the deployment of FCVs while ensuring that the associated environment and energy security benefits are fully realized. Specifically, a case study is performed for the City of Irvine, California – a target area for FCV deployment – to determine the optimized number and location of hydrogen fueling stations required to provide a bridge to FCV commercialization, the preferred rollout strategy for those stations, and the environmental impact associated with three near-term scenarios for hydrogen production and distribution associated with local and regional sources of hydrogen available to the City. Furthermore, because the State of California has adopted legislation imposing environmental standards for hydrogen production, results of the environmental impact assessment for hydrogen production and distribution scenarios are measured against the California standards. The results show that significantly fewer hydrogen fueling stations are required to provide comparable service to the existing gasoline infrastructure, and that key community statistics are needed to inform the preferred rollout strategy for the stations. Well-to-wheel (WTW) greenhouse gas (GHG) emissions, urban criteria pollutants, energy use, and water use associated with hydrogen and FCVs can be significantly reduced in comparison to the average parc of gasoline vehicles regardless of whether hydrogen is produced and distributed with an emphasis on conventional resources (e.g., natural gas), or on local, renewable resources. An emphasis on local renewable resources to produce hydrogen further reduces emissions, energy use, and water use associated with hydrogen and FCVs compared to an emphasis on conventional resources. All three hydrogen production and distribution scenarios considered in the study meet California's standards for well-to-wheel GHG emissions, and well-to-tank emissions of urban ROG and NOX. Two of the three scenarios also meet California's standard that 33% of hydrogen must be produced from renewable feedstocks. Overall, systematic planning optimizes both the economic and environmental impact associated with the deployment of hydrogen infrastructure and FCVs. 相似文献
7.
Jee Eun Kang Tim Brown Will W. Recker G. Scott Samuelsen 《International Journal of Hydrogen Energy》2014
This paper examines the deviation of refueling a hydrogen fuel cell vehicle with limited opportunity provided by the 68 proposed stations in California. A refueling trip is inserted to reported travel patterns in early hydrogen adoption community clusters and the best and worst case insertions are analyzed. Based on these results, the 68 refueling stations provide an average of 2.5 and 9.6 min deviation for the best and the worst cases. These numbers are comparable to currently observed gasoline station deviation, and we conclude that these stations provide sufficient accessibility to residents in the target areas. 相似文献
8.
Piston ring sealing and valve design play an important role in high-pressure oil-free reciprocating compressors for hydrogen refueling stations. The severe non-uniformity of the pressure distribution was suggested to be the root cause of the premature failure of the sealing rings, and therefore a mathematical model was established to simulate the unsteady flow within the gaps of piston rings, based on which the pressure distribution was obtained and the mechanism of the non-uniform abrasion of the rings was disclosed. The method to equalize the pressure difference through each ring was proposed by re-distributing the cut size of each ring, and it was validated experimentally. Aiming at the problem that the self-acting valves in hydrogen compressors could be easily destroyed by severe impact, this paper investigated the motion and impact of valves theoretically and experimentally, based on which the methodology was explored to design the parameters of valves for hydrogen compressors. 相似文献
9.
To reduce criteria pollutant emissions and greenhouse gases from mobile sources, the use of hydrogen as a transportation fuel is proposed as a new paradigm in combination with fuel cells for vehicle power. The extent to which reductions can and will occur depends on the mix of technologies that constitute the hydrogen supply chain. This paper introduces an analysis and planning methodology for estimating emissions, greenhouse gases, and the energy efficiency of the hydrogen supply chain as a function of the technology mix on a life cycle, well to wheels (WTW) basis. The methodology, referred to as the preferred combination assessment (PCA) model, is demonstrated by assessing an illustrative set of hydrogen infrastructure (generation and distribution) deployment scenarios in California's South Coast Air Basin. Each scenario reflects a select mix of technologies for the years 2015, 2030, and 2060 including (1) the proportion of fossil fuels and renewable energy sources of the hydrogen and (2) the rate of hydrogen fuel cell vehicle adoption. The hydrogen deployment scenarios are compared to the existing paradigm of conventional vehicles and fuels with a goal to reveal and evaluate the efficacy and utility of the PCA methodology. In addition to a demonstration of the methodology, the salient conclusions reached from this first application include the following.
- •
- Emissions of criteria pollutants increase or decrease, depending on the hydrogen deployment scenario, when compared to an evolution of the existing paradigm of conventional vehicles and fuels. 相似文献
10.
Youhyun Lee Young Jin Kim Min Chul Lee 《International Journal of Hydrogen Energy》2021,46(34):17597-17607
Green and sustainable transportation has emerged as a mandatory task in alignment with climate change issues globally. In South Korea, fuel cell hydrogen vehicles (FCEVs) are considered to be an alternative to manage the global climate change paradigm and for local fine dust problems. However, low public acceptance is the greatest barrier to the growth of FCEVs and the hydrogen economy. To address this issue, this article discusses possible strategies for enhancing public acceptance of H2 stations using SWOT-AHP methodology and an additional focused group interview. As a result, the strength factor was the highest 1st class priority factor. In the 2nd class, the SO and ST strategies are highly recommended for enhancing public acceptance of H2 infrastructure. This article concludes with practical policy suggestions and alternatives, highlighting the importance of active research and development for hydrogen safety and the need for government-driven support. 相似文献
11.
J. O'M Bockris 《国际能源研究杂志》1978,2(1):9-17
The concept of remote solar plant giving piped hydrogen fuel is gaining strength with the likelihood of realization. Electricity (in 1977 U.S. $) for use in electrolysis with a 50 per cent load factor at the producing plant would be 1 cent/kWh now, and 1.5 cents (still 1977$) in 1985. Potential will be 1.5 V. Cost of 1 MBTU will be in the region of $5 (electrolysis). Photovoltaic electricity using Fresnel concentration and heat exchangers should cost 1 cent/kWh. H2 transport costs should be some 1 mill/1000 km. Examination of ten approaches gives a maximum hydrogen cost of $9/MBTU, a likely value of $5, and speculative laboratory possibilities which could give $1/MBTU. 相似文献
12.
Amir H. Hajimiragha Claudio A. Caizares Michael W. Fowler Somayeh Moazeni Ali Elkamel Steven Wong 《International Journal of Hydrogen Energy》2011,36(11):6357-6375
This paper analyzes the electricity and transport sectors within a single integrated framework and presents the capabilities of this integrated approach to realize an environmentally and economically sustainable transport sector based on fuel cell vehicles (FCVs). A comprehensive robust optimization planning model for the transition to FCVs is developed, considering the constraints of both electricity and transport sectors. This model is finally applied to the real case of Ontario, Canada to determine the Ontario’s grid potential to support these vehicles in the transport sector for a planning horizon ending in 2025. With a reasonable trade-off between optimality and conservatism, it is found that more than 170,000 FCVs can be introduced into Ontario’s transport sector by 2025 without jeopardizing the reliability of the system or any additional grid investments such as new power generation and transmission installations. 相似文献
13.
Tiago Sinigaglia Felipe Lewiski Mario Eduardo Santos Martins Julio Cezar Mairesse Siluk 《International Journal of Hydrogen Energy》2017,42(39):24597-24611
Fossil fuels are responsible for a significant portion of the emissions of greenhouse gases. As the need to find renewable and environmentally friendly energy solutions grows, the tendency is for these sources increase in the vehicle matrices, gradually. Because of this, hydrogen appears as a potential alternative to fossil fuels. Hydrogen is one of the most abundant elements on the planet and can be obtained from numerous sources, such as water, biomass, natural gas, ethanol, among others. To be used in fuel cell vehicles or in internal combustion engines, hydrogen needs to go through stages such as production, storage and distribution. All of these steps need to be feasible in terms of technology, economics and also from the environmental point of view. Therefore, the objective of this study was to review the feasibility and impacts of all stages from production to final use of hydrogen as a resource for mobility purposes. This article provides a general discussion of the path which the hydrogen goes through from its source until its usage, approaching technological, economic and environmental issues that are essential for the viability of this economy. Moreover, it also presents the main challenges and research fields that need greater engagement by researchers and political decision-makers. The results indicate that hydrogen production techniques need more development in order to be competitive. Production methods that show the best average results are hybrid production methods, followed by thermal and photonic. The main difficulty in terms of storage is to obtain a good volumetric density. The volumetric density of the current compression storage is about 5,7 wt percent capacity (wt%). Fuel cells need to achieve better results in terms of system durability (current durability is approximately 120,000 km) and costs. 相似文献
14.
Isaac W. Ekoto Erik G. MeriloDaniel E. Dedrick Mark A. Groethe 《International Journal of Hydrogen Energy》2011,36(16):10169-10178
International regulatory representatives have proposed the performance-based test methodology for hydrogen fuel cell vehicle (HFCV) fuel system integrity certification in a new global technical regulation (GTR). For this test method, vehicle certification depends on system performance during barrier/rollover crash tests. The GTR proposal specifies that the test is failed if within 1 h post-crash, hydrogen leakage rates exceed 118 L/min or flammable mixtures develop within the passenger cabin or trunk. An analysis of the capabilities necessary to detect the second failure mode was performed through exploratory in-vehicle leakage tests at SRI International’s Corral Hallow Experimental Site. Hydrogen concentrations were primarily derived from oxygen depletion sensor measurements, and were compared to directly measured concentrations from co-located hydrogen sensors. Close agreement between the two sensor technologies was observed. Since oxygen depletion measurements have the additional advantage that nonflammable gases can be used, helium was investigated as a surrogate due to its similar diffusion and jet spreading characteristics. The good agreement in overall dispersion trends for both gases highlights the flexibility of the indirect sensor method. While hydrogen mixture fractions strongly depended on release characteristics (e.g., rate, location, type), the results of an analytic examination indicated that pinhole leaks from moderate source pressures likely would produce unacceptably high in-vehicle hydrogen concentrations. The optimum sensor location for leak detection was determined to be high above the release point. Accordingly, sensor placement for crash tests involving vehicle rollovers must account for the final vehicle orientation. 相似文献
15.
Yakup Hames Kemal Kaya Ertugrul Baltacioglu Arzu Turksoy 《International Journal of Hydrogen Energy》2018,43(23):10810-10821
A hydrogen fuel cell vehicle requires fuel cells, batteries, supercapacitors, controllers and smart control units with their control strategies. The controller ensures that a control strategy predicated on the data taken from the traction motor and energy storage systems is created. The smart control unit compares the fuel cell nominal output power with the vehicle power demand, calculates the parameters and continually adjusts the variables. The control strategies that can be developed for these units will enable us to overcome the technological challenges for hydrogen fuel cell vehicles in the near future. This study presents the best hydrogen fuel cell vehicle configurations and control strategies for safe, low cost and high efficiency by comparing control strategies in the literature for fuel economy. 相似文献
16.
Ji-Yong Lee Moosang Yoo Kyounghoon Cha Tae Won Lim Tak Hur 《International Journal of Hydrogen Energy》2009
This study uses a life cycle costing (LCC) methodology to identify when hydrogen can become economically feasible compared to the conventional fuels and which energy policy is the most effective at fostering the penetration of hydrogen in the competitive fuel market. The target hydrogen pathways in this study are H2 via natural gas steam reforming (NG SR), H2 via naphtha steam reforming (Naphtha SR), H2 via liquefied petroleum gas steam reforming (LPG SR), and H2 via water electrolysis (WE). In addition, the conventional fuels (gasoline, diesel) are also included for the comparison with the H2 pathways. 相似文献
17.
Fuel economy of hydrogen fuel cell vehicles 总被引:1,自引:0,他引:1
On the basis of on-road energy consumption, fuel economy (FE) of hydrogen fuel cell light-duty vehicles is projected to be 2.5–2.7 times the fuel economy of the conventional gasoline internal combustion engine vehicles (ICEV) on the same platforms. Even with a less efficient but higher power density 0.6 V per cell than the base case 0.7 V per cell at the rated power point, the hydrogen fuel cell vehicles are projected to offer essentially the same fuel economy multiplier. The key to obtaining high fuel economy as measured on standardized urban and highway drive schedules lies in maintaining high efficiency of the fuel cell (FC) system at low loads. To achieve this, besides a high performance fuel cell stack, low parasitic losses in the air management system (i.e., turndown and part load efficiencies of the compressor–expander module) are critical. 相似文献
18.
Qing Sheng Wei Xia Zhang Byeong Soo Oh 《International Journal of Hydrogen Energy》2021,46(10):7622-7633
This study focuses on the simulation and analysis on the fuel economy of a hydrogen fuel cell vehicle, data collection and modeling to estimate greenhouse gas emission during its lifecycle. Since regenerative braking is a velocity related process, a car which is equipped with it can be significantly affected by the driving cycle. Therefore, the influence of five driving patterns on the fuel economy of a FCEV is investigated. Further prediction of life cycle emission is carried out by several hydrogen production pathways. The results indicate that the mileage of this FCEV for 1 complete charging can be extended by as much as 7% in fast shift driving mode with energy recovery of 30% during braking. The results also prove that hydrogen produced by natural gas in an on-site manner can reduce the lifecycle emission by more than 50%, comparing to that by Naphtha. 相似文献
19.
This article addresses the issue of the diffusion of hydrogen cars in the market, particularly the competition with electric cars for the replacement of conventional vehicles. Using the multi-technological competition model developed by Le Bas and Baron-Sylvester’s (Diffusion technologique non binaire et schéma épidémiologique. Une reconsidération. Economie Appliquée 1995; tome XLVIII(3):71–101), it is shown that the early deployment of plug-in hybrid vehicles—the only electric technology which can compete with fuel cell cars in the multipurpose vehicle field—risks closing the market for hydrogen in the future. Moreover, the advent of the hydrogen vehicle depends on the rapid advancements in fuel cell technologies, as well as on the existence of an infrastructure with a sufficient coverage. 相似文献
20.
David Wenger Wolfgang Polifke Eberhard Schmidt-Ihn Tarek Abdel-Baset Steffen Maus 《International Journal of Hydrogen Energy》2009
In recent years, significant research and development efforts were spent on hydrogen storage technologies with the goal of realizing a breakthrough for fuel cell vehicle applications. This article scrutinizes design targets and material screening criteria for solid state hydrogen storage. Adopting an automotive engineering point of view, four important, but often neglected, issues are discussed: 1) volumetric storage capacity, 2) heat transfer for desorption, 3) recharging at low temperatures and 4) cold start of the vehicle. The article shall help to understand the requirements and support the research community when screening new materials. 相似文献