首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To address the production of hydrogen and urea from glycerol, a green process of a glycerol-to-green chemicals chain (GTGC) named Scheme-1 is presented, where the glycerol is a green feedstock from the production of biodiesel and the carbon capture and utilization (CCU) is involved to reuse captured carbon. The major processes in the GTGC include that (i) the glycerol steam reforming (GSR), the water gas shift reactor, and the ammonia synthesis reactor are integrated to enhance the yields of hydrogen and ammonia, (ii) the pressure swing adsorption (PSA) is added to capture CO2 and produce the high-purity hydrogen, and (iii) CO2 is converted into urea by means of the urea synthesis reactor. The optimal operating conditions of GSR such as glycerol (GLY) conversion and cold gas efficiency are determined by using the response surface methodology. To address the lower CO2 emissions of GTGC, the heat integration of GTGC named Scheme-2 and the heat integration/combined cycle power generation of GTGC named Scheme-3 are proposed. For the comparisons of total CO2 emissions of the three schemes, Scheme-2 is lower than other schemes due to using the heat integration method for reducing hot/cold utilities. For the comparisons of net CO2 emissions of the three schemes, Scheme-3 is superior to other schemes due to no use of external utilities.  相似文献   

2.
The investment in the hydrogen infrastructure for hydrogen mobility has lately seen a significant acceleration. The demand for energy and cost efficient hydrogen liquefaction processes has also increased steadily. A significant scale-up in liquid hydrogen (LH2) production capacity from today's typical 5–10 metric tons per day (tpd) LH2 is predicted for the next decade. For hydrogen liquefaction, the future target for the specific energy consumption is set to 6 kWh per kg LH2 and requires a reduction of up to 40% compared to conventional 5 tpd LH2 liquefiers. Efficiency improvements, however, are limited by the required plant capital costs, technological risks and process complexity. The aim of this paper is the reduction of the specific costs for hydrogen liquefaction, including plant capital and operating expenses, through process optimization. The paper outlines a novel approach to process development for large-scale hydrogen liquefaction. The presented liquefier simulation and cost estimation model is coupled to a process optimizer with specific energy consumption and specific liquefaction costs as objective functions. A design optimization is undertaken for newly developed hydrogen liquefaction concepts, for plant capacities between 25 tpd and 100 tpd LH2 with different precooling configurations and a sensitivity in the electricity costs. Compared to a 5 tpd LH2 plant, the optimized specific liquefaction costs for a 25 tpd LH2 liquefier are reduced by about 50%. The high-pressure hydrogen cycle with a mixed-refrigerant precooling cycle is selected as preferred liquefaction process for a cost-optimized 100 tpd LH2 plant design. A specific energy consumption below 6 kWh per kg LH2 can be achieved while reducing the specific liquefaction costs by 67% compared to 5 tpd LH2 plants. The cost targets for hydrogen refuelling and mobility can be reached with a liquid hydrogen distribution and the herewith presented cost-optimized large-scale liquefaction plant concepts.  相似文献   

3.
The green alga Chlamydomonas reinhardtii has the ability to produce clean and renewable molecular hydrogen through the biophotolysis of water. Hydrogen production takes place under anaerobic conditions, which may be imposed metabolically by depriving the algae of sulphur. Sulphur-deprivation typically requires the spatial and temporal separation of the algal growth and hydrogen production stages. This would typically require separate photobioreactors for each stage as well as a costly and energy intensive medium exchange technique such as centrifugation, making the process difficult to scale up.  相似文献   

4.
Some green microalgae have the ability to harness sunlight to photosynthetically produce molecular hydrogen from water. This renewable, carbon-neutral process has the additional benefit of sequestering carbon dioxide and accumulating biomass during the algal growth phase. We document the details of a novel one-litre vertical flat-plate photobioreactor that has been designed to facilitate green algal hydrogen production at the laboratory scale. Coherent, non-heating illumination is provided by a panel of cool-white light-emitting diodes. The reactor body consists of two compartments constructed from transparent polymethyl methacrylate sheets. The primary compartment holds the algal culture, which is agitated by means of a recirculating gas-lift. The secondary compartment is used to control the temperature of the system and the wavelength of radiation. The reactor is fitted with probe sensors that monitor the pH, dissolved oxygen, temperature and optical thickness of the algal culture. A membrane-inlet mass spectrometry system has been developed and incorporated into the reactor for dissolved hydrogen measurement and collection. The reactor is hydrogen-tight, modular and fully autoclaveable.  相似文献   

5.
Methanol autothermal reforming is a potential way to produce hydrogen that can be used for vehicle power batteries like PEMFC. Combining a reformer with a combustor to produce substantial hydrogen is promising, but the challenge of heat transfer efficiency between the reformer and combustor must be considered. Furthermore, the complexity of the system structure is not conducive to its large-scale operation level. In this paper, a novel methanol autothermal reforming hydrogen production system without catalytic combustion was built and developed, aiming to produce hydrogen-rich gas with low CO concentration. Process simulation and thermodynamic optimization on the target system were detailedly performed using Aspen Plus software and parameter sensitivity analysis methods. In addition, a methanol autothermal reforming hydrogen production system using catalytic combustion was taken as the reference system. The results indicated that the novel system could achieve a self-sustaining operation by the coupled methanol partial oxidation and steam reforming. And the product gas contained very low CO concentration (<10 ppm) due to the combined effects of water-gas shifting and CO preferential oxidation reactions. It was verified that under the maximal exergy efficiency condition, the exergy efficiency of the novel system is not significantly improved compared with the reference system, but the hydrogen yield is increased by about 27.65%, the thermal efficiency is increased by about 17.51%, and the exergy loss when generating unit molar H2 is reduced by 20.53 kJ/mol; Under the condition of maximum hydrogen yield, the indicators of the novel system also perform better. Notably, the reformer is the main exergy loss source in the novel system, which provides a theoretical basis for further optimization of parameter configuration. This work will be beneficial to researchers who study the miniaturization design of the integrated system of methanol hydrogen production coupled vehicle power battery.  相似文献   

6.
The commercial Claus sulfur recovery process is intended for treating H2S present in acid gas by recovering sulfur. During this process, hydrogen present in H2S is inadvertently converted to low grade steam. In the current study, an improved technique for recovering hydrogen and sulfur from acid gas containing H2S was developed using Aspen HYSYS®. Hydrogen production by thermal decomposition of H2S was achieved in the tubes of a waste heat exchanger connected in-series with a reaction furnace and followed by Claus sulfur recovery unit (SRU). The energy requirement for the decomposition reaction was supplied through elemental sulfur combustion in the reaction furnace. While H2S decomposition was defined by a kinetic model in a plug flow reactor, sulfur combustion and H2S-SO2 combustion processes were described using Sulsim? Sulfur Recovery model in Aspen HYSYS®. A commercial Claus sulfur recovery unit (SRU) located in Abu Dhabi was considered for process development. Two different process integration schemes differing in hydrogen recovery layout design were analyzed. Based on various performance indicators, including hydrogen and sulfur yields, H2S conversion rate, and sulfur combustion rate, the most feasible process configuration for maximizing overall process efficiency was identified. The proposed integrated process has the capability for generating hydrogen yield as high as 33% and a simultaneous sulfur recovery of nearly 99%. In addition, the developed processes can significantly curtail the handling load on catalytic section by 11.3% and 16%, respectively, in terms of catalyst bed volume.  相似文献   

7.
In this work, the Taguchi method was used to optimize the dark fermentative H2 production from the organic fraction of municipal solid waste (OFMSW). The experiments were planned using the L16 orthogonal array design with each trial conducted at different levels of substrate concentration, inoculum-to-substrate ratio (ISR), and temperature. Based on the results, the optimal setting of the process parameters was the substrate concentration of 6 g-VS/L, ISR 0.5, and temperature of 55 °C. Furthermore, substrate concentration was the most important parameter affecting bio-H2 production among the three process parameters considered. Finally, a confirmation experiment under optimal conditions yielded 62.5 mL H2/g-VSadded, which was higher than all the bio-H2 yield values obtained in the other conditions tested in this study. The measured and predicted bio-H2 yields in the verification test were also very close to each other, confirming the reliability of the Taguchi method in optimizing the bio-H2 production process.  相似文献   

8.
A novel unicellular hydrogen-producing green alga was isolated from fresh water pond in Pathumthani province, Thailand. Under light microscope, this alga was identified as belonging to the genus Tetraspora. Phylogenetic analysis of 18S rRNA sequence revealed that the green alga, identified as Tetraspora sp. CU2551, is closely related to other unicellular green algal species. Tetraspora sp. CU2551 had the shortest doubling time when grown in Tris-acetate-phosphate (TAP) medium under a light intensity of 48–92 μE/m2/s and a temperature of 36 °C. Hydrogen production increased with increasing pH from 5.75 to 9.30; however, almost no production was observed at a pH of 5.25. Addition of 0.5 mM β-mercaptoethanol to the TAP medium stimulated hydrogen production about two-fold. During the hydrogen production phase, the use of TAP medium lacking both nitrogen and sulfur resulted in about 50% increase in the hydrogen production. This was in contrast to only a small increase in the production when either nitrogen or sulfur was omitted in TAP medium. The stimulation of hydrogen production by 0.5 mM β-mercaptoethanol under nitrogen- and sulfur-deprived conditions occurred only when the cells were grown at a light intensity lower than 5 μE/m2/s with no effects at higher intensities. Maximal calculated hydrogen production, 17.3–61.7 μmol/mg Chl a/h, is a very high production rate compared to other green algae and makes Tetraspora sp. CU2551 an interesting model strain for photobiological hydrogen production.  相似文献   

9.
Green energy commodities are expected to be central in decarbonising the global energy system. Such green energy commodities could be hydrogen or other hydrogen-based energy commodities produced from renewable energy sources (RES) such as solar or wind energy. We quantify the production cost and potentials of hydrogen and hydrogen-based energy commodities ammonia, methane, methanol, gasoline, diesel and kerosene in 113 countries. Moreover, we evaluate total supply costs to Germany, considering both pipeline-based and maritime transport. We determine production costs by optimising the investment and operation of commodity production from dedicated RES based on country-level RES potentials and country-specific weighted average costs of capital. Analysing the geographic distribution of production and supply costs, we find that production costs dominate the supply cost composition for liquid or easily liquefiable commodities, while transport costs dominate for gaseous commodities. In the case of Germany, importing green ammonia could be more cost-efficient than domestic production from locally produced or imported hydrogen. Green ammonia could be supplied to Germany from many regions worldwide at below the cost of domestic production, with costs ranging from 624 to 874 $/t NH3 and Norway being the cheapest supplier. Ammonia production using imported hydrogen from Spain could be cost-effective if a pan-European hydrogen pipeline grid based on repurposed natural gas pipelines exists.  相似文献   

10.
Hydrogen sulfide conversion to hydrogen is an attractive alternative for addressing energy problems, waste management, global warming, and supplying hydrogen in petrochemical and refinery plants. This research is focused on the development of an environmentally friendly process for the decomposition of hydrogen sulfide into hydrogen and elemental sulfur. The developed process includes a thermal cracker to produce hydrogen from hydrogen sulfide and a catalytic isothermal reactor to minimize emissions of sulfur contaminants. In the first step, a process flowsheet is planned for hydrogen sulfide conversion considering a real feed case. In the next step, the planned process is modeled based on the governing equations considering the heat and mass transfer resistances in the steady state condition. Then, optimum operating conditions of the designed process are determined considering the maximum hydrogen productivity and minimum contaminant emissions as objective functions. The results show that the designed process is capable to produce 51.03 kmol h?1 hydrogen and 84.92 kmol h?1 sulfur as main products. In addition, the rate of CS2 and COS emission is negligible in the proposed process.  相似文献   

11.
The hybrid sulfur (HyS) cycle offers an alternative route to hydrogen and sulfuric acid production using the SO2-depolarized electrolysis (SDE) cell. This work reports the most efficient SDE operation to date at high sulfuric acid concentrations (~60 wt%) achieved through the optimization of operating conditions and cell components. We observed that open porosity in the porous transport media (PTM) plays a significant role in SDE performance as it enables efficient acid removal from the catalyst layer. The combination of membrane electrode assembly (MEA) components, such as Sulfonated Diels Alder Poly (phenylene) (SDAPP) membranes and electrodes prepared using SGL 29BC PTM, and operating conditions (103.4 kPagauge at 125 °C) yielded electrolysis potentials <700 mV at 500 mA/cm2 and acid concentrations >60 wt%.  相似文献   

12.
The Philippines is exploring different alternative sources of energy to make the country less dependent on imported fossil fuels and to reduce significantly the country's CO2 emissions. Given the abundance of renewable energy potential in the country, green hydrogen from renewables is a promising fuel because it can be utilized as an energy carrier and can provide a source of clean and sustainable energy with no emissions. This paper aims to review the prospects and challenges for the potential use of green hydrogen in several production and utilization pathways in the Philippines. The study identified green hydrogen production routes from available renewable energy sources in the country, including geothermal, hydropower, wind, solar, biomass, and ocean. Opportunities for several utilization pathways include transportation, industry, utility, and energy storage. From the analysis, this study proposes a roadmap for a green hydrogen economy in the country by 2050, divided into three phases: I–green hydrogen as industrial feedstock, II–green hydrogen as fuel cell technology, and III–commercialization of green hydrogen. On the other hand, the analysis identified several challenges, including technical, economic, and social aspects, as well as the corresponding policy implications for the realization of a green hydrogen economy that can be applied in the Philippines and other developing countries.  相似文献   

13.
A new method of hydrogen production from biomass via a sulfur redox cycle at moderate temperatures has been proposed. This method, which can utilize excess sulfur from hydrocarbon refining processes and waste or geothermal heat, consists of two half cycles: (1) hydrogen production from an aqueous alkaline solution at subcritical conditions of water, where sulfide, HS and S2−, acts as a reducing agent of water, and (2) sulfide regeneration under much milder conditions, with an organic compound derived from biomass acting as a reducing agent of polysulfide, Sn2−, and sulfur oxyanion, SxOy2−, formed in the first half cycle. During a 60-min reaction of an aqueous sodium sulfide solution, hydrogen production was observed at ≥280 °C and corresponding saturated vapor pressures. Addition of D-glucose, C6H12O6, to the solution after hydrogen production at 300 °C resulted in sulfide regeneration at temperatures ≥60 °C in the present 10-min reaction. Moreover, hydrogen production from glucose via the sulfur redox cycle was demonstrated, where the hydrogen production and sulfide regeneration were conducted at 300 °C and 105 °C, respectively. Results indicated that hydrogen production from 1 mol glucose was greater than that by hydrothermal gasification of glucose at much higher temperatures up to 500 °C.  相似文献   

14.
The Once-through Hybrid Sulfur (Ot-HyS) process, proposed in this work, produces hydrogen using the same Sulfur dioxide Depolarized water Electrolysis (SDE) process found in the original Hybrid Sulfur cycle (HyS). In the process proposed here, the Sulfuric Acid Decomposition (SAD) process in the HyS procedure is replaced with the well-established sulfur combustion process. First, a flow sheet for the Ot-HyS process was developed by referring to existing facilities and to the work done by the Savannah River National Laboratory (SRNL) under their reasonable assumptions. The process was then simulated using Aspen Plus with appropriate thermodynamic models. It was demonstrated that the Ot-HyS process has higher net thermal efficiency, as well as other advantages, over competing benchmark processes. The net thermal efficiency of the Ot-HyS process is 47.1% (based on LHV) and 55.7% (based on HHV) assuming 33.3% thermal-to-electric conversion efficiency of a nuclear power plant with no consideration given to the work for the air separation. Hydrogen produced through the Ot-HyS process would be used as off-peak electricity storage, to relieve the burden of load-following and could help to expand applications of nuclear energy, which is regarded as a ’sustainable development’ technology.  相似文献   

15.
The expected increase of hydrogen fuel cell vehicles has motivated the emergence of a significant number of studies on Hydrogen Refuelling Stations (HRS). Some of the main HRS topics are sizing, location, design optimization, and optimal operation. On-site green HRS, where hydrogen is produced locally from green renewable energy sources, have received special attention due to their contribution to decarbonization. This kind of HRS are complex systems whose hydraulic and electric linked topologies include renewable energy sources, electrolyzers, buffer hydrogen tanks, compressors and batteries, among other components. This paper develops a linear model of a real on-site green HRS that is set to be built in Zaragoza, Spain. This plant can produce hydrogen either from solar energy or from the utility grid and is designed for three different types of services: light-duty and heavy-duty fuel cell vehicles and gas containers. In the literature, there is a lack of online control solutions developed for HRS, even more in the form of optimal online control. Hence, for the HRS operation, a Model Predictive Controller (MPC) is designed to solve a weighted multi-objective online optimization problem taking into account the plant dynamics and constraints as well as the disturbances prediction. Performance is analysed throughout 210 individual month-long simulations and the effect of the multi-objective weighting, prediction horizon, and hydrogen selling price is discussed. With the simulation results, this work shows the suitability of MPC for HRS control and its significant economic advantage compared to the rule-based control solution. In all simulations, the MPC operation fulfils all required services. Moreover, results show that a seven-day prediction horizon can improve profits by 57% relative to a one-day prediction horizon; that the battery is under-sized; or that the MPC operation strategy is more resolutive for low hydrogen selling prices.  相似文献   

16.
Pressure swing adsorption (PSA) is an important technology for mixture gas separation and purification. In this work, a dynamic model for a layered adsorption bed packed with activated carbon and zeolite 5A was developed and validated to study the PSA process. The model was validated by calculating breakthrough curves of a five-component gas mixture (H2/CH4/CO/N2/CO2 = 56.4/26.6/8.4/5.5/3.1 mol%) and comparing the results with available experimental data. The purification performance of six-step layered bed PSA cycle was studied using the model. In order to optimize the cycle, the Box-Behnken design (BBD) method was used, as implemented in Design Expert?. The parametric study showed that, for adsorption step durations ranging from 160 to 200 s, as the adsorption time increased, the purity decreased, whereas the recovery and productivity increased. During the pressure equalization step, the purity increased as the pressure equalization time increased, but the recovery and productivity decreased for step durations ranging from 10 to 30 s. As the P/F ratio (hydrogen used in purge step to hydrogen fed in adsorption step) increased from 0.05 to 0.125, the purity increased, whereas the recovery and productivity decreased. The optimization of the layered bed PSA process by the BBD method was then performed. In addition to the adsorption time, the pressure equalization time and the P/F ratio were considered as independent optimization parameters. Quadratic regression equations were then obtained for three responses of the system, namely purity, recovery, and productivity. When purity is set as the main performance indicator, the following values were obtained for the optimization parameters: an adsorption time of 168 s, a pressure equalization time of 14 s, and a P/F ratio of 0.11. Under those conditions, the system achieved a purity of 99.99%, a recovery of 57.76%, and a productivity of 6.41 mol/(kg·h).  相似文献   

17.
Seawater electrolysis is an attractive way to generate hydrogen energy. However, to commercialize this technology, it has been focused on developing chlorine-less oxygen generating electrodes for decades. Here, different from common ideas of minimizing chlorine formation at the anode, we aimed at reusing the waste chlorine from seawater electrolysis to mitigate nitrogen oxide (NOx) emissions. NOx removal performance of electrolyzed seawater containing chlorine was investigated under 254 nm ultraviolet (UV) irradiation in a semi-continuous bubbling reactor. Comparative parametric experiments were conducted for each factor with and without UV irradiation. Significant contributions of UV irradiation on denitrification performance of chlorine were observed under all investigated conditions. A ten-folder improvement in denitrification efficiency by the UV irradiated electrolyzed seawater was achieved under optimal conditions. Possible free radicals’ reaction mechanisms were discussed preliminarily. Results reveal that UV irradiated electrolyzed seawater is a promising way to reuse electrolyzed chlorine and mitigate acid gas emissions.  相似文献   

18.
Mathematical modeling and simulation analysis of the dimethyl ether steam reforming reaction system were carried out in the study. The numerical results of simulation and experiment were consistent. The effects of reaction conditions on the conversion of dimethyl ether and hydrogen production were analyzed. The internal structure of the reforming reactor was adjusted to obtain higher hydrogen production efficiency. The study established the reforming hydrogen production industry system, and analyzed the thermal efficiency of the system. The results show that when the temperature of the conversion bed is 673 K, the inlet flow rate of the mixture gas is 0.5 ms?1 and the ratio of water to ether is 3, the dimethyl ether steam reforming reaction system could obtain the dimethyl ether conversion rate of 90%, the hydrogen production rate of 88% and system thermal efficiency of 74%.  相似文献   

19.
When planning large-scale 100% renewable energy systems (RES) for the year 2050, the system capacity is usually oversized for better supply-demand matching of electrical energy since solar and wind resources are highly intermittent. This causes excessive excess energy that is typically dissipated, curtailed, or sold directly. The public literature shows a lack of studies on the feasibility of using this excess for country-scale co-generation. This study presents the first investigation of utilizing this excess to generate green hydrogen gas. The concept is demonstrated for Jordan using three solar photovoltaic (PV), wind, and hybrid PV-wind RESs, all equipped with Lithium-Ion battery energy storage systems (ESSs), for hydrogen production using a polymer electrolyte membrane (PEM) system. The results show that the PV-based system has the highest demand-supply fraction (>99%). However, the wind-based system is more favorable economically, with installed RES, ESS, and PEM capacities of only 23.88 GW, 2542 GWh, and 20.66 GW. It also shows the highest hydrogen annual production rate (172.1 × 103 tons) and the lowest hydrogen cost (1.082 USD/kg). The three systems were a better option than selling excess energy directly, where they ensure annual incomes up to 2.68 billion USD while having payback periods of as low as 1.78 years. Furthermore, the hydrogen cost does not exceed 2.03 USD/kg, which is significantly lower than the expected cost of hydrogen (3 USD/kg) produced using energy from fossil fuel-based systems in 2050.  相似文献   

20.
Hydrogen production from the sulfur–iodine water splitting cycle integrated with solar or nuclear energy has been proposed as a promising technique. Bunsen reaction is one of the three main steps in the cycle and electrochemical method has been applied to this reaction. In present work, a three-dimensional numerical study of the electrochemical Bunsen reaction was conducted. A three-dimensional, steady state, laminar and isothermal mathematical model of electrolytic cell was developed and verified by experiments. The spatial maldistribution of species concentration was found between electrodes and proton exchange membrane (PEM). The electric power drives most H2SO4 and I2 to the anode and cathode surface, respectively, while the proton attraction contributes to HI enrichment on the surface of PEM. At the high inlet H2SO4 concentration of 50 wt%, the transformation of flow channel from single serpentine to single entry & double serpentine with the same inlet flow rate cannot solve the insufficient problem of SO2. But the increase of the overall inlet flow rate in the double entry & double serpentine flow channel make SO2 sufficient for anode reaction. Further decreasing the inlet H2SO4 concentration to 40 wt% and 30 wt% make the initial SO2 sufficient for overall reactions. The single serpentine channel gives the highest SO2 conversion rate, followed by the single entry & double serpentine and double entry & double serpentine flow channels. The single serpentine flow channel at the H2SO4 inlet concentration of 40 wt% is found optimal for achieving a high electrochemical Bunsen reaction performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号