首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wind power hydrogen production is the direct conversion of electricity generated by wind power into hydrogen through water electrolysis hydrogen production equipment, which produces hydrogen for convenient long-term storage through water electrolysis. With the development of offshore wind power from offshore projects, construction costs continue to rise. Turning power transmission into hydrogen transmission will help reduce the cost of offshore wind power construction. This paper analyses the methods of producing hydrogen from offshore wind power, including alkaline water electrolysis, proton exchange membrane electrolysis of water, and solid oxide electrolysis of water. In addition, this paper outlines economic and cost analyses of hydrogen production from offshore wind power. In the future, with the development and advancement of water electrolysis hydrogen production technology, hydrogen production from offshore wind power could be more economical and practical.  相似文献   

2.
This paper carries out a comprehensive analysis on an offshore wind farm equipped with a hybrid storage comprised of hydrogen and battery, from the perspective of economic effectiveness. To rapidly evaluate the system economy, a computationally efficient convex program that takes the nonlinear storage efficiencies into account is provided, which can simultaneously and synergistically optimize the storage sizing and energy management over a long offshore wind cycle. In the analysis, a case study on the optimal configuration and operation of the hybrid storage is thoroughly investigated, answering what the scalings are and how the storage functions in the offshore wind farm. Comparisons to other offshore wind farms with none or only one storage type further demonstrate the advantage of combining hydrogen plant and battery. Influences of the offshore wind electricity price of grid parity and hydrogen price on the system economies, in the terms of total annual cost, net annual profit and hydrogen production cost, are also discussed, revealing sensitivity and dependency of the scalings. Finally, this paper presents the future potential of applying hydrogen plant in the offshore wind farm, from the angles of hydrogen production cost and energy saving.  相似文献   

3.
Nearly 96% of the world's current hydrogen production comes from fossil-fuel-based sources, contributing to global greenhouse gas emissions. Hydrogen is often discussed as a critical lever in decarbonizing future power systems. Producing hydrogen using unsold offshore wind electricity may offer a low-carbon production pathway and emerging business model. This study investigates whether participating in an ancillary service market is cost competitive for offshore wind-based hydrogen production. It also determines the optimal size of a hydrogen electrolyser relative to an offshore wind farm. Two flexibility strategies for offshore wind farms are developed in this study: an optimal bidding strategy into ancillary service markets for offshore wind farms that build hydrogen production facilities and optimal sizing of Power-to-Hydrogen (PtH) facilities at wind farms. Using empirical European power market and wind generation data, the study finds that offshore-wind based hydrogen must participate in ancillary service markets to generate net positive revenues at current levels of wind generation to become cost competitive in Germany. The estimated carbon abatement cost of “green” hydrogen ranges between 187 EUR/tonCO2e and 265 EUR/tonCO2e. Allowing hydrogen producers to receive similar subsidies as offshore wind farms that produce only electricity could facilitate further cost reduction. Utilizing excess and intermittent offshore wind highlights one possible pathway that could achieve increasing returns on greenhouse gas emission reductions due to technological learning in hydrogen production, even under conditions where low power prices make offshore wind less competitive in the European electricity market.  相似文献   

4.
Offshore wind is currently the most rapidly growing renewable energy source on a global scale. The increasing deployment and high economic potential of offshore wind have prompted considerable interest in its use for hydrogen production. In this context, this study develops a Monte Carlo-based framework for assessing the competitiveness of offshore wind-to-hydrogen production. The framework is designed to evaluate the location-based variability of the levelised cost of hydrogen (LCOH) and explore the uncertainty that exists in the long-term planning of hydrogen production installations. The case study of Poland is presented to demonstrate the application of the framework. This work provides a detailed analysis of the LCOH considering the geographical coordinates of 23 planned offshore wind farms in the Baltic Sea. Moreover, it presents a comparative analysis of hydrogen production costs from offshore and onshore wind parks in 2030 and 2050. The results show that hydrogen from offshore wind could range between €3.60 to €3.71/kg H2 in 2030, whereas in 2050, it may range from €2.05 to €2.15/kg H2.  相似文献   

5.
Renewable and carbon free energy relates to the sustainable development of human beings while hydrogen production by renewables and hydrogen underground storage ensure the stable and economic renewable energy supply. A hybrid energy system combining hydrogen production by offshore wind power with hydrogen storage in depleted oil reservoirs was constructed along with a mathematical model where the Weibull distribution, Wind turbine power function, Faraday's law, continuity equation, Darcy's law, state equation of real gas, Net Present Value (NPV) and the concept of leveling were adopted to clarify the system characteristics. For the case of a depleted oil field in the Bohai Bay, China, the annual hydrogen production, annual levelized cost of hydrogen and payback period are 2.62 × 106 m³, CNY 34.6/kgH2 and 7 years, respectively. Sensitivity analysis found that the wind speed impacted significantly on system NPV and LCOH, followed by hydrogen price and stratum pressure.  相似文献   

6.
With wind energy penetration rate increasing, wind energy curtailment turns severe in some wind farms nowadays and new wind farm construction trends to aggregate this situation. Therefore the need for massive energy storage technology such as “Power to gas” is growing. In this study, a model of integrating curtailed wind energy with hydrogen energy storage is established based on real time data in term of 10 min avg. throughout a whole year in a wind farm. Two wind/hydrogen production scenarios via water electrolysis are given and the influence exerted on payback period by electrolyser power and hydrogen price is talked in tandem as well as the model validity is specified in the conclusion section. Our results further stress the importance of hydrogen energy storage technology on addressing wind energy curtailment and disclose some regularities from an economical perspective.  相似文献   

7.
Wind resource assessments are used to estimate a wind farm's power production during the planning process. It is important that these estimates are accurate, as they can impact financing agreements, transmission planning, and environmental targets. Here, we analyze the challenges in wind power estimation for onshore farms. Turbine wake effects are a strong determinant of farm power production. With given input wind conditions, wake losses typically cause downstream turbines to produce significantly less power than upstream turbines. These losses have been modeled extensively and are well understood under certain conditions. Most notably, validation of different model types has favored offshore farms. Models that capture the dynamics of offshore wind conditions do not necessarily perform equally as well for onshore wind farms. We analyze the capabilities of several different methods for estimating wind farm power production in 2 onshore farms with non‐uniform layouts. We compare the Jensen model to a number of statistical models, to meteorological downscaling techniques, and to using no model at all. We show that the complexities of some onshore farms result in wind conditions that are not accurately modeled by the Jensen wake decay techniques and that statistical methods have some strong advantages in practice.  相似文献   

8.
This paper describes the development of a general-purpose geospatial model for assessing the economic viability of hydrogen production from offshore wind power. A key feature of the model is that it uses the offshore project's location characteristics (distance to port, water depth, distance to gas grid injection point). Learning rates are used to predict the cost of the wind farm's components and electrolyser stack replacement. The notional wind farm used in the paper has a capacity of 510 MW. The model is implemented in a geographic information system which is used to create maps of levelised cost of hydrogen from offshore wind in Irish waters. LCOH values in 2030 spatially vary by over 50% depending on location. The geographically distributed LCOH results are summarised in a multivariate production function which is a simple and rapid tool for generating preliminary LCOH estimates based on simple site input variables.  相似文献   

9.
Due to better wind conditions at sea, offshore wind farms have the advantage of higher electricity production compared to onshore and inland wind farms. In contrast, a greater material input, leading to increased energy consumptions and emissions during the production phase, is required to build offshore wind farms. These contrary effects are investigated for the first German offshore wind farm alpha ventus in the North Sea. In a life cycle assessment its environmental influence is compared to that of Germany’s electricity mix.In comparison to the mix, alpha ventus had better indicators in nearly every investigated impact category. One kilowatt-hour electricity, generated by the wind farm, was burdened with 0.137 kWh Primary Energy-Equivalent and 32 g CO2-Equivalent, which represented only a small proportion of the accordant values for the mix. Furthermore, the offshore foundations as well as the submarine cable were the main energy intensive components. The energetic and greenhouse gas payback period was less than one year.Therefore, offshore wind power, even in deep water, is compatible with the switch to sustainable electricity production relying on renewable energies. Additional research, taking backup power plants as well as increasingly required energy storage systems into account, will allow further calculation.  相似文献   

10.
A wind farm layout optimization framework based on a multi‐fidelity optimization approach is applied to the offshore test case of Middelgrunden, Denmark as well as to the onshore test case of Stag Holt – Coldham wind farm, UK. While aesthetic considerations have heavily influenced the famous curved design of the Middelgrunden wind farm, this work focuses on demonstrating a method that optimizes the profit of wind farms over their lifetime based on a balance of the energy production income, the electrical grid costs, the foundations cost, and the cost of wake turbulence induced fatigue degradation of different wind turbine components. A multi‐fidelity concept is adapted, which uses cost function models of increasing complexity (and decreasing speed) to accelerate the convergence to an optimum solution. In the EU‐FP6 TOPFARM project, three levels of complexity are considered. The first level uses a simple stationary wind farm wake model to estimate the Annual Energy Production (AEP), a foundations cost model depending on the water depth and an electrical grid cost function dictated by cable length. The second level calculates the AEP and adds a wake‐induced fatigue degradation cost function on the basis of the interpolation in a database of simulations performed for various wind speeds and wake setups with the aero‐elastic code HAWC2 and the dynamic wake meandering model. The third level, not considered in this present paper, includes directly the HAWC2 and the dynamic wake meandering model in the optimization loop in order to estimate both the fatigue costs and the AEP. The novelty of this work is the implementation of the multi‐fidelity approach in the context of wind farm optimization, the inclusion of the fatigue degradation costs in the optimization framework, and its application on the optimal performance as seen through an economical perspective. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

11.
Green hydrogen from electrolysis has become the most attractive energy carrier for making the transition from fossil fuels to carbon-free energy sources possible. Especially in the naval sector, hydrogen has the potential to address environmental targets due to the lack of low-carbon fuel options. This study aims at investigating an offshore liquefied green hydrogen production plant for ship refueling. The plant comprises a wind farm for renewable electricity generation, an electrolyzer stack for hydrogen production, a water treatment unit for demineralized water production, and a hydrogen liquefaction plant for hydrogen storage and distribution to ships. A pre-feasibility study is addressed to find the optimal capacities of the plant that minimize the payback time. The model results show that the electrolyzer capacity shall be set equal to a value between 80% and 90% of the wind farm capacity to achieve the minimum payback times. Additionally, the wind farm capacity shall be higher than about 150 MW to limit the payback time to values lower than 11 years for a fixed hydrogen price of 6 €/kg. The Levelized Cost of Hydrogen results to be below 4 €/kg for a wide range of plant capacities for a lifetime of the plant of 25 years. Thus, the model shows that this plant is economically feasible and can be reproduced similarly for different locations by rescaling the different selected technologies. In this way, the naval sector can be decarbonized thanks to a new infrastructure for the production and refueling of liquified green hydrogen directly provided on the sea.  相似文献   

12.
顾为东 《中外能源》2010,15(8):25-29
位于长三角地区的浅海辐射沙洲风能资源十分丰富,而且具有地质条件优越,灾害性气象概率低,没有主航道和大型地下线缆,地处电力负荷中心,高新技术产业基础好,人才基础和资本市场发育良好,已具备理论、技术和实践基础等优势,非常适合发展大规模海上风电场。如开发其中15%的风能资源,即可兴建一个相当于年产4250×104t标煤、每年减排二氧化碳1.12×108t的永续绿色能源基地,而且不占用一亩耕地,不产生一个移民,也不存在生态安全问题。由于风能的自身特性,导致风电的波动性、间歇性和不规则性,使电网难以承受海上大规模风电场的巨大电能。建议采用非并网风电技术,在辐射沙洲地区建设若干"低碳型"高耗能绿色工业园区,利用风能替代化石能源,实现"高碳能源向无碳能源"的跨越。如海水淡化产业基地,变输电上岸为输水上岸;氯碱生产基地及PVC等衍生产业;以电解铝为重点的有色冶金产业基地;新型绿色煤化工产业基地等。  相似文献   

13.
Offshore wind fluctuations are such that dedicated prediction and control systems are needed for optimizing the management of wind farms in real‐time. In this paper, we present a pioneer experiment – Radar@Sea – in which weather radars are used for monitoring the weather at the Horns Rev offshore wind farm, in the North Sea. First, they enable the collection of meteorological observations at high spatio‐temporal resolutions for enhancing the understanding of meteorological phenomena that drive wind fluctuations. And second, with the extended visibility they offer, they can provide relevant inputs to prediction systems for anticipating changes in the wind fluctuation dynamics, generating improved wind power forecasts and developing specific control strategies. However, integrating weather radar observations into automated decision support systems is not a plug‐and‐play task, and it is important to develop a multi‐disciplinary approach linking meteorology and statistics. Here, (i) we describe the settings of the Radar@Sea experiment, (ii) we report the experience gained with these new remote sensing tools, (iii) we illustrate their capabilities with some concrete meteorological events observed at Horns Rev and (iv) we discuss the future perspectives for weather radars in wind energy. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
We have conducted a feasibility study on the development of offshore wind farms around the Korean Peninsula as part of the national plan. This study deals with the selection of the optimal site for an offshore wind farm. We set rating indices in order to select an optimal site of the candidate coasts, which include the expected B/C (benefit to cost) ratio, the possible installation capacity of the wind farm, the convenience of grid connection, and so on, for each candidate site. The expected B/C ratio is described as the benefit from the annual energy production compared to the costs that correspond to the construction of the turbine foundation, and the grid connection between the offshore wind farm and the substation on land. It can be found from the evaluation that the construction costs associated with the substructure and grid connection are crucial in determining the location of the first offshore wind farm in Korea. Consequently, we could select a top site among the candidate sites to be implemented as the first national project of offshore wind farm development.  相似文献   

15.
Installation of a wind farm exposes several problems such as site selection, placement of wind turbines in the site, and designing of cable infrastructure within the farm. The latter problem, called cable layout design, is the determination of cable connections among turbines and one or more transmitters such that energies generated by turbines will be sent through the cable routes, and eventually gathered at the transmitter(s). This problem is especially important for offshore wind farms where the featured and expensive cables are used. The main objective of the present study is to address the cable layout design problem of offshore wind farms to reduce cable costs in the design using optimization-based approaches. The problem, firstly, is modelled as a mixed integer linear program (MIP) under a set of real-life constraints such as different cable and transmitter types and non-crossing connections between the turbines. Then, a novel mathematical model, which is a modification of the MIP model by imposing several heuristic rules, is proposed to solve the layout problem of large offshore wind farms. Experiments on a set of small- and moderate-sized test instances reveal that the heuristic model, MIP_H, reduces the computer time nearly 55% compared to that of MIP model while the average cable costs generated by the models are close to each other. MIP_H, besides its efficiency, provides more cost-effective layouts compared to MIP model for large-sized real-life examples. Additionally, a comparative study on MIP_H and existing methods in the literature shows that MIP_H is able to solve all instances of the real-life examples providing less cable costs in average.  相似文献   

16.
Wind resource availability determines the financial performance of wind farms as it is directly related to production. Offshore wind developers require great investments to design, build, operate and dismantle offshore wind farms. Furthermore, the investments in the offshore floating wind sector are expected to increase in the future. Because of that, the assessment of the variability of the investments, mainly because of the wind resource variability, seems to be a crucial step in the design methodology. Consequently, a flexible methodology for supporting offshore floating wind farm optimal location assessment is presented in this paper. The proposed methodology is focused on including the offshore wind resource variability and its influence on the power production of floating wind farms, as well as on the main financial indicators (internal rate of return, net present value, pay‐back period and cost of energy). The methodology is applied to the north coast of Spain, and it allows to identify the most promising sites for offshore wind farms deployment. Differences on the cost of energy up to 100% can be found in the area under study. The methodology proposed has been conceived to be site‐independent and applied at any spatial and time horizon. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

17.
Renewable hydrogen from water electrolysis could contribute to the defossilization of various energy intensive sectors but continues to suffer from unfavorable economics. Attention is being paid to the direct supply of renewable electricity to electrolyzers; in particular from photovoltaic (PV) and wind units, whose fixed remuneration period has expired. However, detailed analysis of such operating strategies via modeling and simulation of the dynamic behavior of alkaline electrolysis (AEL) and polymer electrolyte membrane electrolysis (PEMEL) is lacking. In this work, an electrolyzer model is developed for both AEL and PEMEL and analyzed for PV and wind power input data sets from the region of northwest Germany. It is shown that key performance indicators (KPI) such as hydrogen production efficiency, electricity utilization rate, product output and net production costs are highly reliant on the shape of transient power input signals as well as the electrolyzers ability to cope with them. PEMEL technology generally has higher electricity utilization rates than AEL, while AEL still achieves relatively large hydrogen production quantities due to its higher efficiency. Thus, the better operational flexibility of PEMEL cannot generally be considered advantageous in terms of hydrogen production quantities – the same applies for economics. The most competitive hydrogen production costs were 4.33 € per kg for the AEL technology with direct electricity supply from old wind farms, which no longer receive fixed remuneration.  相似文献   

18.
S. Emeis 《风能》2010,13(5):459-469
The analytical top‐down wind park model by Emeis and Frandsen 1 is enhanced by consistently making both the downward momentum flux and the momentum loss at the rough surface dependent on atmospheric stability. Specifying the surface roughness underneath the turbines in a wind farm in the model gives the opportunity to investigate principal differences between onshore and offshore wind parks, because the roughness length of the sea surface is two to three orders of magnitude lower than the roughness length of land surfaces. Implications for the necessary distance between single turbines in offshore wind farms and the distance between neighbouring wind parks are computed. It turns out from the model simulations that over smooth surfaces offshore the wind speed reduction at hub height in a wind farm is larger than over rough onshore surfaces given the same density of turbines within the park. Mean wind profiles within the park are also calculated from this model. Offshore wind farms must have a larger distance between each other in order to avoid shadowing effects of the upstream farm. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
Wind turbine spacing is an important design parameter for wind farms. Placing turbines too close together reduces their power extraction because of wake effects and increases maintenance costs because of unsteady loading. Conversely, placing them further apart increases land and cabling costs, as well as electrical resistance losses. The asymptotic limit of very large wind farms in which the flow conditions can be considered ‘fully developed’ provides a useful framework for studying general trends in optimal layouts as a function of dimensionless cost parameters. Earlier analytical work by Meyers and Meneveau (Wind Energy 15, 305–317 (2012)) revealed that in the limit of very large wind farms, the optimal turbine spacing accounting for the turbine and land costs is significantly larger than the value found in typical existing wind farms. Here, we generalize the analysis to include effects of cable and maintenance costs upon optimal wind turbine spacing in very large wind farms under various economic criteria. For marginally profitable wind farms, minimum cost and maximum profit turbine spacings coincide. Assuming linear‐based and area‐based costs that are representative of either offshore or onshore sites we obtain for very large wind farms spacings that tend to be appreciably greater than occurring in actual farms confirming earlier results but now including cabling costs. However, we show later that if wind farms are highly profitable then optimization of the profit per unit area leads to tighter optimal spacings than would be implied by cost minimization. In addition, we investigate the influence of the type of wind farm layout. © 2016 The Authors Wind Energy Published by John Wiley & Sons Ltd  相似文献   

20.
海上风电场建设是风力发电技术的重要方向之一,随着近海风场深入开发,风场建设从近海到远海是其未来必然发展趋势.但海水深度增加将导致深海风电场建设成本急剧上升,漂浮式风力机(发电)技术是解决这一问题的有效途径.较为系统地介绍了工作在深海的漂浮式风力机的各种概念设计,并依据水动力学特性对其进行评价,指出漂浮式的设计计算核心是...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号