首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In this article, an extensive thermodynamic performance assessment for the useful products from the solar tower and high-temperature steam electrolyzer assisted multigeneration system is performed, and also its sustainability index is also investigated. The system under study is considered for multi-purposes such as power, heating, cooling, drying productions, and also hydrogen generation and liquefaction. In this combined plant occurs of seven sub-systems; the solar tower, gas turbine cycle, high temperature steam electrolyzer, dryer process, heat pump, and absorption cooling system with single effect. In addition, the energy and exergy performance, irreversibility and sustainability index of multigeneration system are examined according to several factors, such as environment temperature, gas turbine input pressure, solar radiation and pinch point temperature of HRSG. Results of thermodynamic and sustainability assessments show that the total energetic and exergetic efficiency of suggested paper are calculated as 60.14%, 58.37%, respectively. The solar tower sub-system has the highest irreversibility with 18775 kW among the multigeneration system constituents. Solar radiation and pinch point temperature of HRSG are the most critical determinants affecting the system energetic and exergetic performances, and also hydrogen production rate. In addition, it has been concluded that, the sustainability index of multigeneration suggested study has changed between 2.2 and 3.05.  相似文献   

2.
In the proposed study, the thermodynamic performance assessment of ocean thermal energy conversion (OTEC) based hydrogen generation and liquefaction system are evaluated. In this context, the energetic and exergetic analyses of integrated system are conducted for multigeneration. This integrated process is consisted of the heat exchangers, turbine, condenser, pumps, solar collector system, hot storage tank, cold storage tank and proton exchange membrane (PEM) electrolyzer. In addition to that, the impacts of different design indicators and reference ambient parameters on the exergetic performance and exergy destruction rate of OTEC based hydrogen production system are analyzed. The energetic and exergetic efficiencies of integrated system are founded as 43.49% and 36.49%, respectively.  相似文献   

3.
Although there has been a lot of waste heat utilization studies for the air-cooled data center (DC) systems, the waste heat utilization has not been studied for the liquid-cooled DC systems, which have been rapidly gaining importance for the high-performance Information and Communication Technology facilities such as cloud computing and big data storage. Compared to the air-cooled systems, higher heat removal capacity of the liquid-cooled DC systems provides better heat transfer performance; and therefore, the waste heat of the liquid-cooled DC systems can be more efficiently utilized in the low-temperature and low-carbon energy systems such as electricity generation via polymer electrolyte membrane (PEM) fuel cells. For this purpose, the current study proposes a novel hybrid system that consists of the PEM fuel cell and the two-phase liquid-immersion DC cooling system. The two-phase liquid immersion DC cooling system is one of the most recent and advanced DC cooling methods and has not been considered in the DC waste heat utilization studies before. The PEM fuel cell unit is operated with the hydrogen and compressed air flows that are pre-heated in the DC cooling unit. Due to its original design, the hybrid system brings its own original design criteria and limitations, which are taken into account in the energetic and exergetic assessments. The power density of the PEM fuel cell reaches up to 0.99 kW/m2 with the water production rate of 0.0157 kg/s. In the electricity generation case, the highest energetic efficiency is found as 15.8% whereas the efficiency increases up to 96.16% when different multigeneration cases are considered. The hybrid design deduces that the highest exergetic efficiency and sustainability index are 43.3% and 1.76 and they are 9.4% and 6.6% higher than exergetic and sustainability performances of the stand-alone PEM fuel cell operation, respectively.  相似文献   

4.
In this article, a thermodynamic investigation of solar power tower assisted multigeneration system with hydrogen production and liquefaction is presented for more environmentally-benign multigenerational outputs. The proposed multigeneration system is consisted of mainly eight sub-systems, such as a solar power tower, a high temperature solid oxide steam electrolyzer, a steam Rankine cycle with two turbines, a hydrogen generation and liquefaction cycle, a quadruple effect absorption cooling process, a drying process, a membrane distillation unit and a domestic hot water tank to supply hydrogen, electrical power, heating, cooling, dry products, fresh and hot water generation for a community. The energetic and exergetic efficiencies for the performance of the present multigeneration system are found as 65.17% and 62.35%, respectively. Also, numerous operating conditions and parameters of the systems and their effects on the respective energy and exergy efficiencies are investigated, evaluated and discussed in this study. A parametric study is carried out to analyze the impact of various system design indicators on the sub-systems, exergy destruction rates and exergetic efficiencies and COPs. In addition, the impacts of varying the ambient temperature and solar radiation intensity on the irreversibility and exergetic performance for the present multigeneration system and its components are investigated and evaluated comparatively. According to the modeling results, the solar irradiation intensity is found to be the most influential parameter among other conditions and factors on system performance.  相似文献   

5.
In this study, a new combined system driving a gas turbine cycle has been proposed for seven useful outputs of power, hydrogen, ammonia, heating-cooling, drying and hot water. The proposed integrated plant mainly consists of the gas turbine cycle, Rankine cycle, two organic Rankine cycles, ejector-based cooling, hydrogen production and liquefaction, ammonia production and storage, drying and hot water generation sub-systems. In order to demonstrate that the designed system is an efficient and environmentally plant, the performance analysis was performed by using a software package. Before performing the performance assessment of the plant, the mathematical model of the integrated plant is prepared in accordance with thermodynamic equations. Basic equilibrium equations are used for the thermodynamic equations used. Obtaining multiple useful outputs from the system also have the positive effect on the system effectiveness. The energetic effectiveness of integrated plant for multigeneration with hydrogen and ammonia production is computed to be 62.18% and exergetic efficiency is 58.37%. In addition, the energetic and exergetic effectiveness of hydrogen production and liquefaction process are 57.92% and 54.23%, respectively.  相似文献   

6.
A novel multigeneration plant that's using natural gas for power, hydrogen, ammonia, and hot water generation, is planned and analyzed, in the current paper. The suggested combined plant integrated with four sub-systems, which are the Brayton cycle, reheat Rankine cycle, the high-temperature steam electrolyzer for hydrogen production, and ammonia synthesis processes. Also, thermodynamic analysis and environmental impact assessment are conducted for the designed plant and sub-systems. Moreover, the sustainability index analysis of this proposed study is conducted. The effects of some important indicators on the performance and on the environmental impact of the modeled system and sub-processes are also studied. According to analyses results, it is noted that the energetic and exergetic efficiencies of the suggested system are 51.83% and 70.27%, respectively, and also the total CO2 emission rate is 11.4 kg/kWh for the integrated plant. Furthermore, the total irreversibility rate is computed as 40007.68 kW, and furthermore, the combustion chamber has a maximum irreversibility rate with 20,033 kW, among the proposed plant components.  相似文献   

7.
In the current study, a combined steam and gas turbine system integrated with solar system is studied thermodynamically. In addition, an electrolyzer is added to the integrated system for hydrogen production which makes the current system more environmental friendly and sustainable. This system is then evaluated by employing thermodynamic analysis to obtain both energetic and exergetic efficiencies. The parametric studies are also conducted to investigate the effects of varying operating conditions and state properties on both energy and exergy efficiencies. The present results show that while gas turbine can generate 312 MW directly, 151.72 MW power is generated by steam turbine using solar collectors and exhausted gases recovered from the gas turbine. Furthermore, by adding electrolyzer to the integrated system, a total of 131.3 g/s (472.68 kg/h) hydrogen is generated by using excess electricity which leads to more sustainability system.  相似文献   

8.
In this paper, a solar power-based combined plant for power, hydrogen, methane, ammonia and urea production is proposed. A parabolic trough collector is utilized for the system prime mover. Moreover, steam Rankine cycle, organic Rankine cycle, hydrogen production and compression subsystem, ammonia, methane and urea production units, single-effect absorption cooling unit, and freshwater production plant are integrated together to develop the present system for better system performance and cost-effectiveness and reduced environmental impact. In order to analyze and evaluate the proposed multigeneration plant, thermodynamic, parametric and economic studies are performed. According to the assessment results, it is found that energetic and exergetic efficiencies of the present multigeneration plant are 66.12% and 61.56%, respectively. The comparisons of the subsystem and overall plant efficiencies show that the highest energetic and energetic efficiencies belong to freshwater production plant by 79.24% and 75.62%, respectively. In addition, the present parametric analysis indicates that an increase in the reference temperature, solar radiation intensity and working pressure of the solar process has a positive effect on the plant's performance. The cost analysis reveals that as the solar radiation intensity and the working pressure of the solar process increase, the hydrogen generation cost decreases. Furthermore, the hydrogen generation cost is achieved to be 1.94 $/kgH2 at 650 W/m2 of the solar radiation intensity, with other parameters remaining constant.  相似文献   

9.
Unlike steam and gas cycles, the Kalina cycle system can utilize low-grade heat to produce electricity with water-ammonia solution and other mixed working fluids with similar thermal properties. Concentrated photovoltaic thermal systems have proven to be a technology that can be used to maximize solar energy conversion and utilization. In this study, the integration of Kalina cycle with a concentrated photovoltaic thermal system for multigeneration and hydrogen production is investigated. The purpose of this research is to develop a system that can generate more electricity from a solar photovoltaic thermal/Kalina system hybridization while multigeneration and producing hydrogen. With this aim, two different system configurations are modeled and presented in this study to compare the performance of a concentrated photovoltaic thermal integrated multigeneration system with and without a Kalina system. The modeled systems will generate hot water, hydrogen, hot air, electricity, and cooling effect with photovoltaic cells, a Kalina cycle, a hot water tank, a proton exchange membrane electrolyzer, a single effect absorption system, and a hot air tank. The environmental benefit of two multigeneration systems modeled in terms of carbon emission reduction and fossil fuel savings is also studied. The energy and exergy efficiencies of the heliostat used in concentrating solar radiation onto the photovoltaic thermal system are 90% and 89.5% respectively, while the hydrogen production from the two multigeneration system configurations is 10.6 L/s. The concentrated photovoltaic thermal system has a 74% energy efficiency and 45.75% exergy efficiency, while the hot air production chamber has an 85% and 62.3% energy and exergy efficiencies, respectively. Results from this study showed that the overall energy efficiency of the multigeneration system increases from 68.73% to 70.08% with the integration of the Kalina system. Also, an additional 417 kW of electricity is produced with the integration of the Kalina system and this justifies the importance of the configuration. The production of hot air at the condensing stage of the photovoltaic thermal/Kalina hybrid system is integral to the overall performance of the system.  相似文献   

10.
In this paper, a new renewable energy-based cogeneration system for hydrogen and electricity production is developed. Three different methods for hydrogen production are integrated with Rankine cycle for electricity production using solar energy as an energy source. In addition, a simple Rankine cycle is utilized for producing electricity. This integrated system consists of solar steam reforming cycle using molten salt as a heat carrier, solar steam reforming cycle using a volumetric receiver reactor, and electrolysis of water combined with the Rankine cycle. These cycles are simulated numerically using the Engineering Equation Solver (EES) based on the thermodynamic analyses. The overall energetic and exergetic efficiencies of the proposed system are determined, and the exergy destruction and entropy generation rates of all subcomponents are evaluated. A comprehensive parametric study for evaluating various critical parameters on the overall performance of the system is performed. The study results show that both energetic and exergetic efficiencies of the system reach 28.9% and 31.1%, respectively. The highest exergy destruction rates are found for the steam reforming furnace and the volumetric receiver reforming reactor (each with about 20%). Furthermore, the highest entropy generation rates are obtained for the steam reforming furnace and the volumetric receiver reforming reactor, with values of 174.1 kW/K and 169.3 kW/K, respectively. Additional parametric studies are undertaken to investigate how operating conditions affect the overall system performance. The results report that 60.25% and 56.14% appear to be the highest exergy and energy efficiencies at the best operating conditions.  相似文献   

11.
As an alternative, clean and sustainable solution, a biomass-based integrated power plant is designed and studied both thermodynamically and parametrically. Due to the environmental, economic and performance related advantages, the design of multigeneration energy plants is now increasing and becoming widespread technology. Biomass, which is one of the renewable power sources, is selected for the plant to be more sustainable and environmentally friendly. The proposed system using biomass as an energy source consists of several sub-plants integrated to utilize the waste thermal energy and to generate useful products which are electricity, hydrogen, fresh and hot water, heating, and cooling. In this paper, comprehensive work is carried out for plant modeling and simulation. The thermodynamic assessment results reveal that both energetic and exergetic effectiveness of the whole plant are 56.17% and 52.83%, which are affected positively by varying the reference state conditions, combustor temperature, biomass gasifier temperature, SOFC temperature and pressure, and biomass mass flow rate. In addition, the lowest energy and exergy efficiencies occur in the ORC combined ejector refrigeration cycle with 21.87% and 18.26%, respectively.  相似文献   

12.
In the present study, an innovative multigeneration plant for hydrogen and ammonia generation based on solar and biomass power sources is suggested. The proposed integrated system is designed with the integration of different subsystems that enable different useful products such as power and hydrogen to be obtained. Performance evaluation of designed plant is carried out using different techniques. The energetic and exergetic analyses are applied to investigate and model the integrated plant. The plant consists of the parabolic dish collector, biomass gasifier, PEM electrolyzer and hydrogen compressor unit, ammonia reactor and ammonia storage tank unit, Rankine cycle, ORC cycle, ejector cooling unit, dryer unit and hot water production unit. The biomass gasifier unit is operated to convert biomass to synthesis gaseous, and the concentrating solar power plant is utilized to harness the free solar power. In the proposed plant, the electricity is obtained by using the gas, Rankine and ORC turbines. Additionally, the plant generates compressed hydrogen, ammonia, cooling effect and hot water with a PEM electrolyzer and compressed plant, ammonia reactor, ejector process and clean-water heater, respectively. The plant total electrical energy output is calculated as 20,125 kW, while the plant energetic and exergetic effectiveness are 58.76% and 55.64%. Furthermore, the hydrogen and ammonia generation are found to be 0.0855 kg/s and 0.3336 kg/s.  相似文献   

13.
In this paper, a proposal for a novel integrated Brayton cycle, supercritical plant, trans critical plant and organic Rankine cycle-based power systems for multi-generation applications are presented and analyzed thermodynamically. The plant can generate power, heating-cooling for residential applications, and hydrogen simultaneously from a single energy source. Both energetic and exergetic analyses are conducted on this multi-generation plant and its subsystems in order to evaluate and compare them thermodynamically, in terms of their useful product capabilities. The energetic and exergetic effectiveness of the multi-generation system are computed as 44.69% and 42.03%, respectively. After that, a parametric study on each of the subsystems of the proposed combined system is given in order to provide a deeper understanding of the working of these subsystems under different states. Lastly, environmental impact assessments are provided to raise environmental concerns for several operating conditions. For the base working condition, the results illustrate that the proposed plant has 0.5961, 0.0442, 0.6265 and 1.678 of exergo-environmental impact factor, exergy sustainability index, exergy stability factor and sustainability index, respectively.  相似文献   

14.
Fossil fuel-powered thermal desalination processes have many harmful environmental effects including greenhouse gas (GHG) emissions and high-salinity brine discharge resulting in biological damages, in addition to energy losses because of the high temperatures of the streams leaving the desalination unit. In this study, a solar energy-based polygeneration approach has been proposed to address these issues. In the proposed system, concentrated solar parabolic trough technology is used to drive a multi-stage flash (MSF) desalination unit for production of fresh water. To recover the waste heat carried by the produced clean water, an organic Rankine cycle is integrated to produce electricity. In addition, to recover the waste heat carried by brine, an absorption cooling system is employed to provide cooling. In order to mitigate the effects of high-salinity brine, a pressure retarded osmosis (PRO) unit is installed, which reduces the salinity of the discharge and produces additional electrical energy. To ensure stable nighttime operations, a thermal energy storage (TES) system is also added to the system. A comprehensive thermodynamic analysis is conducted through mass, energy, and entropy, as well as exergy balances along with energetic and exergetic efficiencies to assess the overall performance of the system. The attained results show that at reference conditions with an overall parabolic trough collectors (PTCs) area of 100 000 m2, the system produces 583.3 kW of electricity, approximately 4284 kW of cooling, and 1140 m3 of freshwater daily. Furthermore, the effects of changing operational conditions on the overall performance of the system are investigated. At design conditions, the overall energetic and exergetic efficiencies of the system are found to be 34.54% and 14.55%, respectively.  相似文献   

15.
In this paper, thermodynamic analysis and assessment of a novel geothermal energy based integrated system for power, hydrogen, oxygen, cooling, heat and hot water production are performed. This integrated process consists of (a) geothermal subsystem, (b) Kalina cycle, (c) single effect absorption cooling subsystem and (d) hydrogen generation and storage subsystems. The impacts of some design parameters, such as absorption chiller evaporator temperature, geothermal source temperature, turbine input pressure and pinch point temperature on the integrated system performance are investigated to achieve more efficient and more effective. Also, the impacts of reference temperature and geothermal water temperature on the integrated system performance are studied in detail. The energetic and exergetic efficiencies of the integrated system are then calculated as 42.59% and 48.24%, respectively.  相似文献   

16.
In this study, a new solar power assisted multigeneration system designed and thermodynamically analyzed. In this system, it is designed to perform heating, cooling, drying, hydrogen and power generation with a single energy input. The proposed study consists of seven sub-parts which are namely parabolic dish solar collector, Rankine cycle, organic Rankine cycle, PEM-electrolyzer, double effect absorption cooling, dryer and heat pump. The effects of varying reference temperature, solar irradiation, input and output pressure of high-pressure turbine and pinch point temperature heat recovery steam generator are investigated on the energetic and exergetic performance of integration system. Thermodynamic analysis result outputs show that the energy and exergy performance of overall study are computed as 48.19% and 43.57%, respectively. Moreover, the highest rate of irreversibility has the parabolic dish collector with 24,750 kW, while the lowest rate of irreversibility is calculated as 5745 kW in dryer. In addition, the main contribution of this study is that the solar-assisted multi-generation systems have good potential in terms of energy and exergy efficiency.  相似文献   

17.
A Brayton plant-based multigenerational system is proposed and investigated thermodynamically through energetic and exergetic approaches in this study. Liquid hydrogen, electrical energy, heating-cooling and fresh water are the useful outputs produced by the combined plant. For this purpose, the Brayton cycle, organic Rankine cycle, multi-effect distillation plant, single-effect absorption cooling plant, hydrogen generation and liquefaction unit are used in the multigeneration system design. The study targets are to design a novel multigeneration system design, develop the related software codes, analyze the system thermodynamically, and evaluate the effects of plant design indicators. Thermodynamic assessment results indicate that the energy efficiency of the multigeneration system ranges between 63.64% and 74.31%, the exergy efficiency value ranges from 55.67% to 67.35%. Parametric analyses performed in this study indicate that the most influential parameter is the fuel mass flow rate. Also, it should be stated that an increase in the dead state temperature, combustion chamber temperature, and fuel mass flow rate positively affects the plant effectiveness.  相似文献   

18.
This study examines the exergetic sustainability effect of PEM electrolyzer (PEME) integrated high pressure hydrogen gas storage system whose capacity is 3 kg/h. For this purpose, the indicators, previously used in the literature, are taken into account and their variations are parametrically studied as a function of the PEME operating pressure and storage pressure by considering i) PEME operating temperature at 70 °C, ii) PEME operating pressures at 10, 30, 50 and 100 bar, iii) hydrogen gas flow rate at 3 kg/h and iv) storage pressure between 200 and 900 bar. Consequently, the results from the parametric investigation indicate that, with the ascent of storage pressure from 200 to 900 bar at a constant PEME operating pressure (=50 bar), exergetic efficiency changes decreasingly between 0.612 and 0.607 while exergetic sustainability between 1.575 and 1.545. However, it is estimated that waste exergy ratio changes increasingly between 0.388 and 0.393 while environmental effect factor between 0.635 and 0.647. Additionally, it is said that the higher PEME outlet pressure causes the higher exergetic sustainability index, the lower environmental effect factor, the lower waste exergy output, the higher exergetic efficiency. However, the higher storage pressure causes the lower exergetic efficiency, the higher waste exergy output, the higher environmental effect factor and the lower exergetic sustainability index. Thus, it is recommended that this type of the system should be operated at higher PEME outlet pressure, and at an optimum hydrogen storage pressure.  相似文献   

19.
The importance of renewable energy compared to fossil fuels is increasing due to growing energy demand and environmental challenges. Multi-generation systems use one or more energy sources and produce several useful outputs. The present study aims at investigating and comparing solar energy based multi-generation systems with and without once-through MSF desalination unit from the thermodynamic point of view. Firstly, hydrogen, electricity, and hot water for space heating and domestic usage are produced using the system, which consists of a parabolic trough collector, an organic Rankine cycle (ORC) and a PEM electrolyzer and heat exchanger as sub-systems. The performance of the entire system is evaluated from the energetic and exergetic points of view. Various parameters affecting hydrogen production rate and efficiency values are also investigated with the thermodynamic model implemented in the Engineering Equation Solver (EES) package. The system can produce hydrogen at a mass flow rate of 20.39 kg/day. The results of the study show that the energy and exergy efficiency values of the ORC are calculated to be 16.80% and 40% while those for the overall system are determined to be 78% and 25.50%, respectively. Secondly, once-through MSF desalination unit is integrated to the system between ORC evaporator and heat exchanger producing domestic hot water in the solar cycle in order not to affect hydrogen production rate while thermodynamic values are compared. Fresh water production capacity of the system is calculated to be at a volumetric flow rate of 5.74 m3/day with 10 stages.  相似文献   

20.
This study represents the results of the analysis and optimization of an integrated system for cogenerating electricity and freshwater. This setup consists of a Solid Oxide Fuel cell (SOFC) for producing electricity. Unburned fuel of the SOFC is burned in the afterburner to increase the temperature of the SOFC's outlet gasses and operate a Gas turbine (GT) to produce additional power and operate the air compressor. At the bottom of this cycle, a combined setup of a Multi-Effect Desalination (MED) and Reverse Osmosis (RO) is considered to produce freshwater from the unused heat capacity of the GT's exhaust gasses. Also, a Stirling engine is used in the fuel supply line to increase the fuel's temperature. Using LNG and the Stirling engine will replace the fuel compressor with a pump which increases the system performance and eliminates the need for the expansion valve. To study the system performance a mathematical model is developed in Engineering Equation Solver (EES) program. Then, the system's simulated data from the EES has been sent to MATLAB to promote the best operating condition based on the optimization criteria. An energetic, exergetic, economic, and environmental analysis has been performed and a Non-dominated Sorting Genetic Algorithm (NSGA-II) is used to achieve the goal. The two-objective optimization is performed to maximize the exergetic efficiency of the proposed system while minimizing the system's total cost of production. This cost is a weighted distribution of the Levelized Cost of Electricity (LCOE) and Levelized Cost of freshwater (LCOW). The results showed that the exergetic and energetic efficiencies of the system can reach 73.5% and 69.06% at the optimum point. The total electricity production of the system is 99 MW. The production cost is 11.71 Cents/kWh, of which 1.04 Cents/kWh is emission-related and environmental taxes. The freshwater production rate is 42.44 kg/s which costs 4.38 USD/m3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号