首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Dry reforming of CH4 on a platinum-rhodium alumina catalyst is selected to numerically investigate biogas reforming process. Langmuir-Hinshelwood-Hougen-Watson (LHHW) rate expressions for dry reforming and reverse water-gas shift reactions are presented. Activation energies are estimated by combining microkinetics with the theory of unity bond index-quadratic exponential potential (UBI-QEP). Pre-exponential factors are initially obtained by using the transition state theory (TST) and optimised, later, by minimising errors between modelling and experimental data. Adsorption of CH4 on the catalyst surface is found to be the rate determining step in the range of relatively low temperature (600–770 °C), while at relatively high temperature (770–950 °C) the thermal cracking of adsorbed CH4 is the rate controlling step. Small effect of reverse water-gas shift reaction results in the ratio of H2 to CO produced less than unity for all operating conditions. The simulation shows that the dry reforming process proceeds with reaction rate far from equilibrium state. The presented mechanism is capable of predicting the dependence of biogas dry reforming activities (e.g., reactant conversions, product formations, H2 to CO ratio, and temperature profile inside the catalyst) on operating conditions (e.g., inlet temperature, heat supplied through the catalyst wall, and composition of biogas at inlet).  相似文献   

2.
Among the alternative pathways for hydrogen production, the use of biogas from organic waste via dry reforming of methane (DRM), water gas shift reaction and pressure swing adsorption (PSA) is often seen as an interesting option. In this work, the thermodynamic performance of this type of biohydrogen energy system –additionally including a combined-cycle scheme that satisfies the electricity and steam requirements of the process– is evaluated through exergy analysis. The main data needed for the analysis are acquired from a predictive simulation model implemented in Aspen Plus®. The system shows an exergetic efficiency of 55%, with the DRM and the power generation subsystems arising as the main sources of irreversibility. Furthermore, given the significant influence found for the PSA off-gas on the thermodynamic performance of the system, two alternative process configurations based on the use of this stream are evaluated. In this regard, full recirculation of the PSA off-gas to the DRM reactor is found to improve the system's exergetic performance.  相似文献   

3.
This work presents the development of an A-site deficient La0.9−xBaxAl0.85Ni0.15O3 (x = 0, 0.02, 0.04, and 0.06) perovskite oxide catalyst for dry reforming of model biogas. The catalysts are prepared using a citrate sol-gel method and used for biogas dry reforming at 800 °C for feed ratios (CH4/CO2) of 1.5 and 2.0. The fresh and spent catalysts are analyzed using XRD, FTIR, TPD, XPS, FESEM, TEM, TPR, TGA-DTA, and Raman analysis. The XRD analysis exhibits the host perovskite oxide structure and the exsolved Ni phase for all prepared catalysts. The partial doping of Ba improves the metal support interaction and oxygen vacancies that enhance catalytic activity and stability, as revealed by the TPR and XPS analysis. The stability experiment on La0.9−xBaxAl0.85Ni0.15O3, for x = 0 catalyst resulted in reduced activity due to the catalyst deactivation by sintering, as confirmed by XRD and FE-SEM. Among all the catalysts studied, La0.84Ba0.06Al0.85Ni0.15O3 (LB6AN-15) exhibited the highest catalytic stability with CH4, and CO2 conversions are 60% and 93%, respectively, for 40 h time-on-stream due to the strong metal support interactions, high oxygen vacancies, and anti-sintering of exsolved Ni nanoparticles in biogas dry reforming.  相似文献   

4.
A Ni based catalyst supported on a cordierite monolithic substrate was applied to the autothermal reforming (ATR) of biogas to produce hydrogen. When the feed rates of oxygen and steam were constant, the Steam/CH4 (S/CH4) and O2/CH4 ratios changed because of an increase or decrease in the methane concentration of the biogas. The concentration of methane in the biogas fluctuates roughly between 35% and 65% according to factors such as the properties or amount of the waste. Therefore, the effect of S/CH4 and O2/CH4 ratios on catalyst durability was confirmed by using actual biogas, which was produced by anaerobic fermentation of biomass at the biogasification bench-scale plant in Kyoto. Reforming reactions were carried out at ratios of S/CH4 = 0–4, O2/CH4 = 0.5 and at S/CH4 = 2, O2/CH4 = 0.6. The S/CH4 range of 0–2.0 and the O2/CH4 range of 0.5–0.6 had no effect on the catalyst durability and a S/CH4 ratio of more than 3.0 led to decreased catalytic performance.  相似文献   

5.
The study evaluates the effect of forced periodic cycling between methane dry reforming and carbon regeneration using a gasifying agent, such as carbon dioxide. The activity of Ce-promoted Ni–CO/Al2O3 catalyst was evaluated in a methane dry reforming process using a fixed-bed reactor under steady-state and periodic operation. Forced cycling reactions (reforming and regeneration) were conducted by manipulating the reactor feed between methane dry reforming and catalyst gasification using CO2 at cycle periods of 10, 20, and 30 min, and cycle splits of 0.8, 0.6, and 0.4. The physicochemical properties of fresh and spent catalysts were evaluated using several characterization techniques, such as the BET surface area, H2-chemisorption, and XRD. The results confirmed that methane dry reforming under periodic cycling provides an opportunity to improve methane conversion and increase the catalyst activity and longevity because of the periodic interruption of coke deposition. In particular, methane conversion deteriorated from 68% to 37% under steady-state within five hours of reforming, whereas a modest decrease in methane conversion (from 68% to 63% for a cycle period of 10 min and cycle split 0.8) was observed under periodic operation conditions. The results of catalyst characterization also demonstrated that the on-line removal of carbon during CO2 regeneration did not lead to any structural effect on the catalyst properties, and it absolutely restored the catalyst properties up to the values measured for the fresh catalyst.  相似文献   

6.
This paper presents detailed study of biogas reforming. Model biogas with different levels of H2S is subjected to reforming reaction over supported Ni catalyst in a fixed bed reactor at 700 °C and 800 °C. In order to understand the poisoning effects of H2S the reactions have been initially carried out without H2S in the feed stream. Three different H2S concentrations (20, 50 and 100 ppm) have been considered in the study. The H2O to CH4 ratio is maintained in such as way that CO2 also participates in the reforming reaction. After performing the poisoning studies, regeneration of the catalyst has been studied using three different techniques i) removal of H2S from the feed stream ii) temperature enhancement and iii) steam treatment. Poisoning at low temperature is not recoverable just by removal of H2S from the feed stream. However, poisoning at high temperature is easily reversed just by removal of H2S from the feed stream. Unlike some previous reports by Li et al. (2010) and Rostrup-nielsen (1971) [1,2], catalyst regeneration is achieved in shorter time frames for all the regeneration techniques attempted.  相似文献   

7.
This work focuses on a facile NiO/MgO/ZrO2 synthesis protocol for syngas production via partial oxidation and dry reforming of biogas. Herein, performance of the developed catalysts with different amounts of MgO (0–40 %wt. of support) and NiO (10–50 %wt.) on %CH4 conversion, %CO2 conversion, H2/CO ratio, and carbon formation are studied. The results reveal the presence of monoclinic ZrO2 and tetragonal ZrO2 phases with 50%NiO/ZrO2 catalyst synthesized by surface modification technique using carbon derived from urea. Addition of MgO in the catalyst shows ability to stabilize tetragonal ZrO2 phase as well as enhance basic surface of the catalyst. These properties render the adsorption of CO2 molecules on the surface, which subsequently are reduced by carbon, leading to CO production. Appropriated amount of NiO and MgO, which is 30 %wt. NiO and 20 %wt. MgO (relative to ZrO2) can produce syngas having quality (H2/CO molar ratio) of ca. 2.  相似文献   

8.
The catalytic efficiency and bench scale time on steam stability of Ni dispersed on three commercially available catalytic supports (ZrO2, La2O3–ZrO2 and CeO2–ZrO2) has been studied for the dry reforming of methane (DRM) in the temperature range of 500–800 °C and a CH4/CO2 ratio equal to 1.5, simulating typical biogas quality. Ni supported on LaZr and CeZr carriers that obeyed enhanced basicity and oxygen ion lability values than Zr, exhibited superior catalytic efficiency and stability. A variety of techniques, namely N2 physisorption-desorption (BET method), powder X-ray diffraction (XRD), hydrogen temperature programmed reduction (H2-TPR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, potentiometric titration and inductively coupled plasma emission spectroscopy (ICP), were applied for the characterization of particles morphology, textural, structural and other physical properties of the materials, as well as the type of carbon deposited on the catalytic surface after exposure to DRM reaction conditions. Post-reaction analysis of the deposited carbon on the catalysts surfaces showed that the prominent trend of the carbon deposits on the Ni/Zr and Ni/LaZr samples was to have a filamentous tube like morphology (graphite-2H). In contrast, on the Ni/CeZr used catalyst, the formation of small amount of carbon tube-like architectures was detected. The enhanced basicity and Ni dispersion of the Ni/LaZr and Ni/CeZr samples as well as the high oxygen ion lability of the lattice oxygen in the latter, were considered to be the major factors involved in the superior efficiency and durability of these samples in comparison to Ni/Zr sample.  相似文献   

9.
Biogas dry reforming is as an alternative renewable route for the hydrogen production. However, the major drawback of this process is the catalyst deactivation by carbon deposition and sintering. In this work, Ni-Al catalysts were studied aiming to suppress the carbon deposition in the dry reforming of biogas. The catalysts were prepared by coprecipitation and evaluated the washing step. The reactions were carried out with unreduced and reduced catalysts in a fixed bed tubular reactor using a synthetic biogas (60% CH4 and 40% CO2). The washing and activation steps influenced the characteristics of the catalysts and the catalytic properties in the biogas reforming. The unwashed sample resulted in an oxide containing potassium nickelate with high basicity and low surface area. Both washed samples, reduced and unreduced, showed a high amount of carbon formation, whereas no carbon formation was observed in the unwashed samples for the reactions in the temperature range of 500–750 °C. The unwashed and unreduced sample was the only one that maintained the activity during all the reaction time at 700 °C (40% CH4 conversion and 75% CO2 conversion), low coke amount and no evidence of sintering, which was confirmed by XRD, TPO, and SEM analyses. The carbon suppression was related to the nickelate phase and to the Ni carbide formation in the unwashed and unreduced catalyst. In summary, the carbon deposition in biogas dry reforming was completely controlled between 600 and 750 °C using the unwashed and unreduced Ni-Al catalyst.  相似文献   

10.
A grid of hydrogen refuelling stations comparable to gasoline is essential for improving the individual transport based on fuel cell technology. To avoid transport and storage problems with hydrogen, small-scale hydrogen production plants are required. During the project BioRobur a pilot-plant with a hydrogen output of 50 Nm³/h was constructed and investigated. The plant is based on the autothermal reforming of biogas with a noble metal catalyst. All required reactants are stored or produced at the plant side. The purification of the synthetic gas is not considered.Within the article the plant efficiency and the cold gas efficiency were measured at different temperatures, oxygen to carbon ratios and gas hourly space velocities. Additionally the workload of the pilot-plant was varied, showing a highly reliable operation for a workload of at least 20%. Furthermore, the hydrogen production costs of the pilot-plant were compared with other common technologies, like electrolysis and steam reforming.  相似文献   

11.
In this article, possibilities of biogas reforming techniques for hydrogen production are discussed. The consideration of biogas reforming to produce H2 and fuel cell application from membrane technology is presented. In steam reforming process, methane requires a high temperature for reaction, but a suitable catalyst can manage a higher temperature. The ratio of H2/CO is close to 3, which means higher H2 yield (above 70%). The ratio of H2/CO to nearly 2 and H2 yield almost 67% and also reduces the soot formation for partial oxidation process. In Auto thermal reforming, higher yield of H2 is around 74% with the ratio of H2/CO close to 2.8. The dry reforming process leads to a molar ratio H2/CO of nearly one and H2 yield of approximately 50%. The ratio of H2/CO correspondingly improves and generates H2 yield of approximately 60% for dry oxidation reforming process. For sustainable decentralized power generation in remote and rural areas, large-scale development of H2 energy technology is required. Biogas reforming is an auspicious process for the production of green hydrogen gas as well as for reducing overburden on natural gas. The main benefit of using biogas for H2 production as a renewable energy source is reducing excessive burden on natural gas and greenhouse gas emissions. Nowadays, the importance of renewable H2 production has increased due to many reasons such as depletion of fossil fuel reserves, global environmental issues, energy issues, and demand for pure H2.  相似文献   

12.
Biogas is a renewable resource obtained mainly from the anaerobic fermentation of agro-industrial and anthropogenic residues. The production of hydrogen by dry reforming of methane represents a potential application for this renewable energy carrier. This could play a positive contribution towards meeting the challenge of providing a global supply of energetically sustainable and environmentally friendly energy. This work combines a catalytic reaction, a separation and the catalyst regeneration in a single reactor. To this end, a two zone fluidized bed reactor (TZFBR) with hydrogen selective membranes has been employed (TZFBR + MB). The operating conditions for the process of dry reforming of biogas have been optimized experimentally, both in TZFBR and TZFBR + MB. Several catalysts were prepared (Ni/Al2O3, NiCe/Al2O3, NiCo/Al2O3), characterized and tested in reactions in both TZFBR and in TZFBR + MB. Finally, the influence of using oxygen or carbon dioxide as regenerating gases in the process has been studied. Experimental results show the feasibility of using CO2 for in situ catalyst regeneration, avoiding the potential problems associated with the use of O2.  相似文献   

13.
Metal-support interface influences the catalytic activity and physical properties of heterocatalysts dramatically. Herein, the effect of cerium on material properties and catalytic activity of cobalt over gamma-alumina applied in dry reforming of methane (DRM) was investigated. The dispersion of cobalt over gamma-alumina was noticeably improved with low cerium dosages ranging from 0.1 to 0.5 wt%. In addition, the presence of Ce promoter on catalyst surface led to an enhancement in reducibility of cobalt oxide to cobalt metal in the catalyst activation. Using CO2-temperature programmed desorption technique, the catalyst basicity was found to increase proportionally with cerium loading. At an optimal dosage of 0.3–0.5 wt%, the cerium promoted cobalt supported on gamma catalyst displayed outstanding performance in DRM with noticeable conversion improvements up to 11% in both methane and carbon dioxide.  相似文献   

14.
The activity of Ni-containing hydrotalcite-derived catalysts was assayed in the excess-methane dry reforming of different CH4-CO2 mixtures, aiming to simulate biogas upgrading to hydrogen and/or syngas. These catalysts yielded methane conversions quite far away from the thermodynamically predicted values, pointing to the inhibition of important methane consuming reactions, such as direct methane decomposition (DMD). Adding oxygen to the gas mixture (12.5%) results in increased methane conversions. Almost constant H2/CO ratios, around 1.5, were measured at any temperature (600–850 °C). However, solid carbon formation was found to take place to a higher extent. The intrinsic properties of the hydrotalcite-derived catalysts tested results in favored reverse water gas shift reaction, leading to CO2 and H2 conversion.  相似文献   

15.
Biogas produced during anaerobic decomposition of plant and animal wastes consists of high concentrations of methane (CH4), carbon dioxide (CO2) and traces of hydrogen sulfide (H2S). The primary focus of this research was on investigating the effect of a major impurity (i.e., H2S) on a commercial methane reforming catalyst during hydrogen production. The effect of temperature on CH4 and CO2 conversions was studied at three temperatures (650, 750 and 850 °C) during catalytic biogas reforming. The experimental CH4 and CO2 conversions thus obtained were found to follow a trend similar to the simulated conversions predicted using ASPEN plus. The gas compositions at thermodynamic equilibrium were estimated as a function of temperature to understand the intermediate reactions taking place during biogas dry reforming. The exit gas concentrations as a function of temperature during catalytic reforming also followed a trend similar to that predicted by the model. Finally, catalytic reforming experiments were carried out using three different H2S concentrations (0.5, 1.0 and 1.5 mol%). The study found that even with the introduction of small amount of H2S (0.5 mol%), the CH4 and CO2 conversions dropped to about 20% each as compared to 65% and 85%, respectively in the absence of H2S.  相似文献   

16.
Mesoporous nanocrystalline Mg1-xNixAl2O4 (x = 0.10, 0.13, 0.17 and 0.20) with large surface area were synthesized via a simple one-step sol-gel method using nonprecious metals. The prepared Mg1-xNixAl2O4 catalysts exhibit good catalytic performance towards methane and carbon dioxide dry reforming reaction. The catalysts were evaluated by various techniques, including XRD, BET, TPR, TPO, EPR, Chemisorption, SEM and TEM. All the Ni incorporated MgAl2O4 samples possessed high BET area (296–305 m2 g?1) and pore volume (0.47–0.56 cm3 g?1) with small pore size (6.4–7.4 nm) in meso region after calcination at 700 °C. The TPR results suggested strong interaction effect in NiMg and the reducibility property of the catalysts improved with the increase of nickel doping. Mg0.8Ni0.2Al2O4 exhibited the highest activity for biogas dry reforming with 72.6% CH4 and 80.7% CO2 conversion at 700 °C. Electron paramagnetic resonance (EPR) results indicated that the incorporation of Ni in MgAl2O4 spinel lattice led to the lattice distortion and formed oxygen vacancies which are a benefit for the dry reforming reaction.  相似文献   

17.
An experimental and theoretical study for the biogas steam reforming reaction over 5%Ru/Al2O3 catalyst have been performed. An apparatus was constructed for the conduction of the experiments, the core of which was a tube reactor, filled with the catalyst in form of pellets. The inlet gas mixture consisted of CH4 and CO2 in various composition ratios as a model biogas and steam. A theoretical model of the process was developed. The experimental reactor was modelled as an isothermal pseudo homogeneous fixed bed reactor. Internal and external transport phenomena were neglected and appropriate effectiveness factors were employed instead. A physical properties model was used for the calculation of the physicochemical properties of the real mixture. Five reactant species, CH4, CO2, H2O, CO and H2, were included in the model, whereas the feed consisted of the first three. Steam reforming and water gas shift were the main reactions. Experimental results and theoretical predictions match closely, stability of the catalyst was assured and an optimal operational window was identified, at GHSV = 10,000–20,000 h−1, T = 700–800 °C, CH4/CO2 = 1.0–1.5 and H2O/CH4 = 3.0–5.0.  相似文献   

18.
Biogas is mainly composed of methane, carbon dioxide as well as other compounds such as water and volatile organic compounds (VOCs). In this study, the composition of a biogas produced in a landfill is determined using gas chromatography. CH4 and CO2 represent 60% of its composition, rendering a valorization via the dry reforming of methane (DRM) reaction very promising. Moreover, H2O and VOCs represent respectively 1.5% and 1500 ppm of biogas, which may affect the catalytic efficiency. The performance of CoNiMgAl catalysts derived from hydrotalcites is studied in the presence of toluene, water and a combination of both. The presence of toluene causes a progressive increase in the catalytic activity as well as higher carbon deposition. The addition of water decreases CO2 conversion and carbon formation and increases the H2/CO to values closer to 1. When both molecules are added, the catalytic activity remains stable, confirming that DRM is possible in the presence of both compounds.  相似文献   

19.
The influence of operating parameters over dry reforming of methane reaction was evaluated using a Ni-based catalyst obtained after calcination of a hydrotalcite-like precursor. The studied variables were mass to flow ratio (W/F), reaction temperature and CO2/CH4 ratio. Maximum methane and carbon dioxide conversions were achieved at W/F ratios above 0.21 g h L−1. The higher the W/F ratio was, the lower amount of water was formed, which led to a higher H2/CO ratio. The increase in reaction temperature produced an increase in conversions. Water concentration in the outlet stream showed a maximum at 600 °C. At this temperature, reverse water–gas-shift reaction (RWGS) was favoured because it is endothermic. However, steam reforming and carbon gasification were also favoured and they consumed great part of the water produced. CO2/CH4 ratios above 1 led to a higher CH4 conversion but selectivity to hydrogen decreased because RWGS reaction was favoured. When CO2/CH4 was below unity, CH4 conversion decreased but less amount of water was produced so a higher H2 selectivity was achieved. The catalyst exhibited good stability over dry reforming of methane under all the tested conditions, which may be ascribed to its high basicity. This property improved CO2 adsorption and then RWGS reaction and carbon gasification.  相似文献   

20.
This work investigated the effect of the nature of dopant (Pr, Nb and Zr) on the performance of Pt supported on cerium-based oxides deposited on alumina for dry reforming of methane. in situ XRD and XANES analyses showed that the sample doped with Pr exhibited the highest redutibility of ceria (23%). Furthermore, the cyclohexane dehydrogenation reaction revealed that the addition of Pr improved the resistance to metal sintering during the dry reforming reaction. In the absence of doped-ceria oxide, a strong deactivation took place on Pt/Al2O3 catalyst during reaction, which was due to the absence of support reducibility and the highest Pt sintering. Among the doped-ceria samples, Pt/CePr/Al2O3 exhibited the highest activity and stability. These results were attributed to: (i) the oxygen mobility of the supports containing ceria, mainly for the sample doped with Pr, which favors the carbon removal mechanism; and (ii) the absence of Pt sintering during the reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号