首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hydropower compounds most of the energy matrix of the countries of the Latin America and Caribbean region (LAC). Considering the concern in reducing Green House Gases emissions (GHG) from hydropower plants and hydrogen production from fossil sources, green hydrogen (H2) appears as an energy vector able to mitigate this impact. Improving the efficiency of the plant and producing renewable energy the element is an interesting alternative from the ecological and economic point of view. This study aims to estimate the potential of H2 production from wasted energy, through the electrolysis of water in hydroelectric plants in Colombia and Venezuela. The construction of two scenarios allowed obtaining a difference, considering a spilled flow of 2/3 in the first scenario and 1/3 in the second. In Colombia, hydrogen production reached 3.39 E+08 Nm3 at a cost of 2.05 E+05 USD/kWh in scenario1, and 1.70 E+08 Nm3 costing 4.10 E+05 USD/kWh in scenario 2. Regarding the Venezuelan context, the country obtained lower production values of H2, ranging between 7.76 E+07 Nm3.d?1 and 4.31 E+07 Nm3.d?1, and production cost between 9.45 E+09 USD/kWh and 1.89 E+10 USD/kWh. Thus, the final cost for the production and storage of H2 was estimated at 0.2239 USD.kg?1. Ultimately, Colombia and Venezuela have a large potential to supply the demand for nitrogen fertilizers with green ammonia production, apply green hydrogen in manufacturing and use the surplus for energy substitution of Liquefied Petroleum Gas - LPG. In Colombia, the chemical energy offered is equivalent to 6.681 E+11 MJ/year?1 and in Venezuela, the result is equal to 1.697 E+11 MJ/year?1 in the conservative scenario. Finally, the countries have great potential for the diversification of the energy matrix and the insertion of renewables in the system.  相似文献   

2.
A feasibility study exploring the use of geothermal energy in hydrogen production is presented. It is possible to use a thermal energy to supply heat for high temperature electrolysis and thereby substitute a part of the relatively expensive electricity needed. A newly developed HOT ELLY high temperature steam electrolysis process operates at 800 – 1000°C. Geothermal fluid is used to heat fresh water up to 200°C steam. The steam is further heated to 900°C by utilising heat produced within the electrolyser. The electrical power of this process is reduced from 4.6 kWh per normalised cubic meter of hydrogen (kWh/Nm3 H2) for conventional process to 3.2 kWh/Nm3 H2 for the HOT ELLY process implying electrical energy reduction of 29.5%. The geothermal energy needed in the process is 0.5 kWh/Nm3 H2. Price of geothermal energy is approximately 8–10% of electrical energy and therefore a substantial reduction of production cost of hydrogen can be achieved this way. It will be shown that using HOT ELLY process with geothermal steam at 200°C reduces the production cost by approximately 19%.  相似文献   

3.
Brazil has great potential for diversification and decarbonization of its energy matrix, with the insertion of a clean and renewable energy source such as hydrogen. This paper seeks to evaluate the surplus energy potential of solar and nuclear plants installed in the country for the production of green and purple hydrogen using high and low temperature electrolysis methods. Based on official reports and databases of energy production and demand, the results indicated that the total potential of surplus solar energy is equal to 4.29E+07 (kWh.d?1). Further, the total potential of electricity production from the hydrogen obtained through surplus solar energy was equivalent to1.87E+07 (kWh.d?1); and the total cost of producing solar hydrogen is equal to 1.07E+03 (USD.kWh?1). In conclusion, the study contributed to demonstrate the pathways to the establishment of strategies that assist the transition to a hydrogen economy in Brazil.  相似文献   

4.
The performance of a novel electro-reformer for the production of hydrogen by electro-reforming alcohols (methanol, ethanol and glycerol) without an external electrical energy input is described. This tandem cell consists of an alcohol fuel cell coupled directly to an alcohol reformer, negating the requirement for external electricity supply and thus reducing the cost of operation and installation. The tandem cell uses a polymer electrolyte membrane (PEM) based fuel cell and electrolyser. At 80 °C, hydrogen was generated from methanol, by the tandem PEM cell, at current densities above 200 mA cm−2, without using an external electricity supply. At this condition the electro-reformer voltage was 0.32 V at an energy input (supplied by the fuel cell component) of 0.91 kWh/Nm3; i.e. less than 20% of the theoretical value for hydrogen generation by water electrolysis (4.7 kWh/Nm3) with zero electrical energy input from any external power source. The hydrogen generation rate was 6.2 × 10−4 mol (H2) h−1. The hydrogen production rate of the tandem cell with ethanol and glycerol was approximately an order of magnitude lower, than that with methanol.  相似文献   

5.
Cryo-compressed hydrogen (CcH2) is a promising hydrogen storage method with merits of high density with low power consumption. Thermodynamic analysis and comparison of several CcH2 processes are conducted in this paper, under hydrogen storage conditions of 10–100 MPa at 60–100 K. Mixed-refrigerant J-T (MRJT), nitrogen/neon reverse Brayton (RBC) and hydrogen expansion are employed for cooling hydrogen, respectively. Combined CcH2 processes such as MRJT + neon-RBC are proposed to reach higher CcH2 density at lower temperatures (<80 K). It was indicated that the specific power consumptions (SPC) of MRJT processes are obviously lower than those of nitrogen/neon-RBC or hydrogen expansion processes. For a typical storage condition of 50 MPa at 80 K, MRJT CcH2 process could achieve hydrogen density of 71.59 kg m?3, above liquid hydrogen. While its SPC of 6.42 kWh kg?1 is about 40% lower than current dual-pressure Claude hydrogen liquefaction processes (10.85 kWh kg?1).  相似文献   

6.
In this study, two types of high temperature electrolyzers (O=SOE and H+SOE) were investigated for hydrogen generation in relation to nuclear power plant operations. The analysis encompasses the thermal integration of proton and ion conducting solid oxide electrolyzers, which are fed with steam generated in the nuclear plant. Under consideration in the study was the steam turbine cycle of an AP1000 nuclear power plant. The main parameters of electrolysis were tailored to match the typical operating temperature of the electrolyzers, and the water utilization factor was set at the same value for the two technologies under consideration. There are some advantages to applying high temperature electrolysis to the deaerator steam feed: first, there is almost no modification of the nuclear steam turbine cycle; second, flexibility of the nuclear power plant rises by 20% with almost constant thermal load of the nuclear reactor; and third, high pressure hydrogen is obtained for commercial purposes. The analysis concludes that hydrogen can be produced in electrolyzers integrated with nuclear plants at an energy cost of 38.83 and 37.55 kWh kgH2−1 for protonic and ionic solid oxide electrolyzers, respectively.  相似文献   

7.
The study aims to optimize the geothermal and solar-assisted sustainable energy and hydrogen production system by considering the genetic algorithm. The study will be useful by integrating hydrogen as an energy storage unit to bring sustainability to smart grid systems. Using the Artificial Neural Network (ANN) based Genetic Algorithm (GA) optimization technique in the study will ensure that the system is constantly studied in the most suitable under different climatic and operating conditions, including unit product cost and the plant's power output. The water temperature of the Afyon Geothermal Power Plant varies between 70 and 130 °C, and its mass flow rate varies between 70 and 150 kg/s. In addition, the solar radiation varies between 300 and 1000 W/m2 for different periods. The net power generated from the region's geothermal and solar energy-supported system is calculated as 2900 kW. If all of this produced power is used for hydrogen production in the electrolysis unit, 0.0185 kg/s hydrogen can be produced. The results indicated that the overall energy and exergy efficiencies of the integrated system are 4.97% and 16.0%, respectively. The cost of electricity generated in the combined geothermal and solar power plant is 0.027 $/kWh if the electricity is directly supplied to the grid and used. The optimized cost of hydrogen produced using the electricity produced in geothermal and solar power plants in the electrolysis unit is calculated as 1.576 $/kg H2. The optimized unit cost of electricity produced due to hydrogen in the fuel cell is calculated as 0.091 $/kWh.  相似文献   

8.
Hydrogen represents a promising clean fuel for future applications. The biocathode of a two-chambered microbial electrolysis cell (biotic MEC) was studied and compared with an abiotic cathode (abiotic MEC) in order to assess the influence of naturally selected microorganisms for hydrogen production in a wide range of cathode potentials (from −400 to −1800 mV vs SHE). Hydrogen production in both MECs increased when cathode potential was decreased. Microorganisms present in the biotic MEC were identified as Hoeflea sp. and Aquiflexum sp. Supplied energy was utilized more efficiently in the biotic MEC than in the abiotic, obtaining higher hydrogen production respect to energy consumption. At −1000 mV biotic MEC produced 0.89 ± 0.10 m3 H2 d−1 m−3NCC (Net Cathodic Compartment) at a minimum operational cost of 3.2 USD kg−1 H2. This cost is lower than the estimated market value for hydrogen (6 USD kg−1 H2).  相似文献   

9.
Three aspects of producing hydrogen via renewable electricity sources are analyzed to determine the potential for solar and wind hydrogen production pathways: a renewable hydrogen resource assessment, a cost analysis of hydrogen production via electrolysis, and the annual energy requirements of producing hydrogen for refueling. The results indicate that ample resources exist to produce transportation fuel from wind and solar power. However, hydrogen prices are highly dependent on electricity prices. For renewables to produce hydrogen at $2 kg−1, using electrolyzers available in 2004, electricity prices would have to be less than $0.01 kWh−1. Additionally, energy requirements for hydrogen refueling stations are in excess of 20 GWh/year. It may be challenging for dedicated renewable systems at the filling station to meet such requirements. Therefore, while plentiful resources exist to provide clean electricity for the production of hydrogen for transportation fuel, challenges remain to identify optimum economic and technical configurations to provide renewable energy to distributed hydrogen refueling stations.  相似文献   

10.
Hydrogen is produced via steam methane reforming (SMR) for bitumen upgrading which results in significant greenhouse gas (GHG) emissions. Wind energy based hydrogen can reduce the GHG footprint of the bitumen upgrading industry. This paper is aimed at developing a detailed data-intensive techno-economic model for assessment of hydrogen production from wind energy via the electrolysis of water. The proposed wind/hydrogen plant is based on an expansion of an existing wind farm with unit wind turbine size of 1.8 MW and with a dual functionality of hydrogen production and electricity generation. An electrolyser size of 240 kW (50 Nm3 H2/h) and 360 kW (90 Nm3 H2/h) proved to be the optimal sizes for constant and variable flow rate electrolysers, respectively. The electrolyser sizes aforementioned yielded a minimum hydrogen production price at base case conditions of $10.15/kg H2 and $7.55/kg H2. The inclusion of a Feed-in-Tariff (FIT) of $0.13/kWh renders the production price of hydrogen equal to SMR i.e. $0.96/kg H2, with an internal rate of return (IRR) of 24%. The minimum hydrogen delivery cost was $4.96/kg H2 at base case conditions. The life cycle CO2 emissions is 6.35 kg CO2/kg H2 including hydrogen delivery to the upgrader via compressed gas trucks.  相似文献   

11.
This work deals with the evaluation of levelized costs of energy and hydrogen of wind farms and concentrated photovoltaic thermal systems. The production of hydrogen is ensured by an alkaline water electrolyser supplied by the electric current generated by the renewable energy sources. The study is carried out on the basis of meteorological data from the Tangier region, in Morocco. Mathematical models are developed to assess the performance and efficiency of renewable sources in terms of energy and hydrogen production for different installed powers. The comparison between the current results and those of previous work shows that the discrepancy did not exceed 6% for both electrical and thermal efficiency of the concentrated photovoltaic/thermal system. The results show that the energy consumption ratios of the electrolyzer are 61 and 64 kWh.kg−1 for wind and solar energy, respectively. Wind and solar hydrogen production efficiencies are also 66 and 62%, respectively. Results show that levelized costs of energy and hydrogen decrease with the increase in installed wind and photovoltaic capacity. The overall results also show that the Tangier region can produce energy and hydrogen at low cost using wind energy compared to concentrated photovoltaic installations. For the hybridization of the two green sources studied, this is highly recommended provided that the capacity of the electrolyzer to be installed is optimal in order to effectively improve the production of hydrogen.  相似文献   

12.
In overall iodine-sulphur (I-S) cycle (Bunsen reaction), HI decomposition is a serious challenge for improvement in H2 production efficiency. Herein, we are reporting an electrochemical process for HI decomposition and simultaneous H2 and I2 production. Commercial Nafion 117 membrane has been generally utilized as a separator, which also showed huge water transport (electro-osmosis), and deterioration in conductivity due to dehydration. We report sulphonated poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-co-HFP) (SCP) and sulphonated graphene oxide (SGO) composite stable and efficient polymer electrolyte membrane (PEM) for HI electrolysis and H2 production. Different SCP/SGO composite PEMs were prepared and extensively characterized for water content, ion-exchange capacity (IEC), conductivity, and stabilities (mechanical, chemical, and thermal) in comparison with commercial Nafion117 membrane. Most suitable optimized SCP/SGO-30 composite PEM exhibited 6.78 × 10?2 S cm?1 conductivity in comparison with 9.60 × 10?2 S cm?1 for Nafion® 117. The electro-osmotic flux ofSCP/SGO-30 composite PEM (2.53 × 10?4 cm s?1) was also comparatively lower than Nafion® 117 membrane (2.75 × 10?4 cm s?1). For HI electrolysis experiments, SCP/SGO-30 composite PEM showed good performance such as 93.4% current efficiency (η), and 0.043 kWh/mol-H2 power consumption (Ψ). Further, intelligent architecture of SCP/SGO composite PEM, in which hydrophilic SGO was introduced between fluorinated polymer by strong hydrogen bonding, high efficiency and performance make them suitable candidate for electrochemical HI decomposition, and other diversified electrochemical processes.  相似文献   

13.
The solid oxide electrolysis cells (SOEC) technology is a promising solution for hydrogen production with the highest electrolysis efficiency. Compared with its counterparts, operating at high temperature means that SOEC requires both power and heat. To investigate the possibility of coupling external waste heat with the SOEC system, and the temperature & quantity requirement for the external waste heat, a universal SOEC system operating at atmospheric pressure is proposed, modeled and analyzed, without specific waste heat source assumption such as solar, geothermal or industrial waste heat. The SOEC system flow sheet is designed to create opportunity for external waste heat coupling. The results show that external waste heat is required for feed stock heating, while the recommended coupling location is the water evaporator. The temperature of the external waste heat should be above 130 °C. For an SOEC system with 1 MW electrolysis power input, the required external waste heat is about 200 kW. When the stack operates at thermoneutral state and 800 °C, the specific energy consumption is 3.77 kWh/Nm3-H2, of which electric power accounts for 84% (3.16 kWh/Nm3-H2) and external waste heat accounts for 16% (0.61 kWh/Nm3-H2). The total specific energy consumption remains almost unchanged when operating the SOEC stack around the thermoneutral condition.  相似文献   

14.
This paper deals with the analysis of the economy of scale at on-site hydrogen refueling stations which produce hydrogen through steam methane reforming or water electrolysis, in order to identify the optimum energy mix as well as the total construction cost of hydrogen refueling stations in Korea. To assess the economy of scale at on-site hydrogen stations, the unit hydrogen costs at hydrogen stations with capacities of 30 Nm3/h, 100 Nm3/h, 300 Nm3/h, and 700 Nm3/h were estimated. Due to the relatively high price of natural gas compared to the cost of electricity in Korea, water electrolysis is more economical than steam methane reforming if the hydrogen production capacity is small. It seems to be the best strategy for Korea to construct small water electrolysis hydrogen stations with production capacities of 100 Nm3/h or less until 2020, and to construct steam methane reforming hydrogen stations with production capacities of 300 Nm3/h or more after 2025.  相似文献   

15.
Hydrogen has the highest gravimetric energy density of all fuels; however, it has a low volumetric energy density, unfavorable for storage and transportation. Hydrogen is usually liquefied to meet the bulk transportation needs. The exothermic interconversion of its spin isomers is an additional activity to an already energy-intensive process. The most significant temperature drop occurs in the precooling cycle (between ?150 °C and up to ?180 °C) and consumes more than 50% of the required energy. To reduce the energy consumption and improve the exergy efficiency of the hydrogen liquefaction process, a new high-boiling component, Hydrofluoroolefin (HFO-1234yf), is added to the precooled mixed refrigerant. As a result, the specific energy consumption of precooling cycle reduces by 41.8%, from 10.15 kWh/kgLH2 to 5.90 kWh/kgLH2, for the overall process. The exergy efficiency of the proposed case increases by 43.7%; however, the total equipment cost is also the highest. The inflated cost is primarily due to the added ortho-to-para hydrogen conversion reactor, boosting the para-hydrogen concentration. From the perspective of bulk storage and transportation of liquid hydrogen, the simplicity of design and low energy consumption build a convincing case for considering the commercialization of the process.  相似文献   

16.
Anode catalysts synthesized by the thermal decomposition method were used for splitting water in PEM electrolysis cells. Although the area resistance of the ternary anode materials increased, the Ti content in the ruthenium and iridium based catalysts have led to an energy consumption of 4.5 kWh/Nm3(H2) at 60 °C. The Membrane Electrode Assemblies have given information on the strong dependence of the membrane thickness. The crossover of hydrogen through Nafion®117 is two-fold lower than that measured in the presence of Nafion®115. Life testing was attempted with supplying the electrolyzer by solar power source. Importantly, the proton exchange membrane water electrolyzer (PEMWE) cell has involved a constant cell voltage at 1 A cm−2 over 800 h durability tests.  相似文献   

17.
Ongoing and emerging renewable energy technologies mainly produce electric energy and intermittent power. As the energy economy relies on banking energy, there is a rising need for chemically stored energy. We propose heat driven reverse electrodialysis (RED) technology with ammonium bicarbonate (AmB) as salt for producing hydrogen. The study provides the authors’ perspective on the commercial feasibility of AmB RED for low grade waste heat (333 K–413 K) to electricity conversion system. This is to our best of knowledge the only existing study to evaluate levelized cost of energy of a RED system for hydrogen production. The economic assessment includes a parametric study, and a scenario analysis of AmB RED system for hydrogen production. The impact of various parameters including membrane cost, membrane lifetime, cost of heating, inter-membrane distance and residence time are studied. The results from the economic study suggests, RED system with membrane cost less than 2.86 €/m2, membrane life more than 7 years and a production rate of 1.19 mol/m2/h or more are necessary for RED to be economically competitive with the current renewable technologies for hydrogen production. Further, salt solubility, residence time and inter-membrane distance were found to have impact on levelized cost of hydrogen, LCH. In the present state, use of ammonium bicarbonate in RED system for hydrogen production is uneconomical. This may be attributed to high membrane cost, low (0.72 mol/m2/h) hydrogen production rate and large (1,281,436 m2) membrane area requirements. There are three scenarios presented the present scenario, market scenario and future scenario. From the scenario analysis, it is clear that membrane cost and membrane life in present scenario controls the levelized cost of hydrogen. In market scenario and future scenario the hydrogen production rate (which depends on membrane properties, inter-membrane distance etc.), the cost of regeneration system and the cost of heating controls the levelized cost of hydrogen. For a thermally driven RED system to be economically feasible, the membrane cost not more than 20 €/m2; hydrogen production rate of 3.7 mol/m2/h or higher and cost of heating not more than 0.03 €/kWh for low grade waste heat to hydrogen production.  相似文献   

18.
Hydrogen energy has become one of the important directions of future energy development. The hydrogen produced by electrolyzed water is regarded as "green hydrogen", is clean and pollution-free, and is considered the ultimate direction of hydrogen production. If the waste heat of solid particles can be used as the energy required for the water electrolysis process, the cost of "green hydrogen" will be much lower than that of fossil fuel hydrogen production. In order to study the effect of particle structure size on hydrogen production capacity, the heat transfer model of the ellipsoidal particles packed bed with single-vacancy was constructed. Further, the temperature, the apparent thermal resistance, the average heat flux, and the vacancy affects area were studied. With the increase of the particle aspect ratio, the apparent thermal resistance decreases, the average heat flux increase, and hydrogen production increases. When the particle aspect ratio increases from 0.5 to 2.0, the average heat flux of the packed bed with single-vacancy increases from 23.13 kW/m2 to 28.87 kW/m2, and the apparent thermal resistance decreases from 23.33 K/W to 9.27 K/W. As the particle aspect ratio increases, the area affected by single-vacancy increases, the hindering effect of the vacancy on the heat flow increases.  相似文献   

19.
Microbial electrolysis cells (MECs) can be used to treat wastewater and produce hydrogen gas, but low cost cathode catalysts are needed to make this approach economical. Molybdenum disulfide (MoS2) and stainless steel (SS) were evaluated as alternative cathode catalysts to platinum (Pt) in terms of treatment efficiency and energy recovery using actual wastewaters. Two different types of wastewaters were examined, a methanol-rich industrial (IN) wastewater and a food processing (FP) wastewater. The use of the MoS2 catalyst generally resulted in better performance than the SS cathodes for both wastewaters, although the use of the Pt catalyst provided the best performance in terms of biogas production, current density, and TCOD removal. Overall, the wastewater composition was more of a factor than catalyst type for accomplishing overall treatment. The IN wastewater had higher biogas production rates (0.8–1.8 m3/m3-d), and COD removal rates (1.8–2.8 kg-COD/m3-d) than the FP wastewater. The overall energy recoveries were positive for the IN wastewater (3.1–3.8 kWh/kg-COD removed), while the FP wastewater required a net energy input of −0.7–−1.2 kWh/kg-COD using MoS2 or Pt cathodes, and −3.1 kWh/kg-COD with SS. These results suggest that MoS2 is the most suitable alternative to Pt as a cathode catalyst for wastewater treatment using MECs, but that net energy recovery will be highly dependent on the specific wastewater.  相似文献   

20.
This article aims to demonstrate the process of building a low-cost water electrolyzer using common materials and to analyze the influence of practical experiments on students' knowledge. Practical classroom experiments are of great importance to students' learning and problems such as bureaucracy in the teaching department, high cost of equipment and lack of teacher time are some of the factors responsible for the delay in performing them in the classroom. Applying the Advanced Product Quality Planning methodology, Active Learning, thermodynamic and electrochemical modeling, it was possible to build an electrolyzer with about 150 US$. In the electrolyzer, the electrolytic solutions with 1 M concentration of NaOH and KOH were used, i.e., 39 g L?1 and 64 g L?1, respectively, to produce the gases hydrogen and oxygen. The flow of hydrogen and oxygen for the KOH electrolytic solution was 1.22 L min?1 and for the NaOH solution, 1.07 L min?1 was found using a 9–12 V and 8–15 A adjustable transformer. Among the undergraduate students who were interviewed, 54% did not know electrolysis and 46% knew just the basic concepts. After the practical experiment, it was observed that 94% of the students understood the concepts of the electrochemical reaction. Based on the averages of the two tests applied to students, before and after the practical experiment, an increase of 58% in the correctness of the questions was found for students who had not heard of electrolysis before and a 13% increase was observed for those who already knew the basic concepts. With this experiment, it was possible to observe how much practical activities in the classroom can positively influence the understanding of electrolysis and make students aware of this renewable energy production process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号