首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen has the potential to become a powerful energy vector with different applications in many sectors (industrial, residential, transportation and other applications) as it offers a clean, sustainable, and flexible alternative. Hydrogen trains use compressed hydrogen as fuel to generate electricity using a hybrid system (combining fuel cell and batteries) to power traction motors and auxiliaries. This hydrogen trains are fuelled with hydrogen at the central train depot, like diesel locomotives. The main goal of this paper is to perform a techno-economic analysis for a hydrogen refuelling stations using on-site production, based on PEM electrolyser technology in order to supply hydrogen to a 20 hydrogen-powered trains captive fleet. A sensitivity analysis on the main parameters will be performed as well, in order to acquire the knowledge required to take any decisions on implementation regarding electricity cost, hydrogen selling price, number of operation hours and number of trains for the captive fleet.The main methodology considers the evaluation of the project based on the Net Present Value calculation and the sensitivity analysis through standard method using Oracle Crystal Ball. The main result shows that the use of hydrogen as an alternative fuel for trains is a sustainable and profitable solution from the economic, environmental and safety points of view.The economic analysis concludes with the need to negotiate an electricity cost lower than 50 €/MWh, in order to be able to establish the hydrogen selling price at a rate higher than 4.5€/kg. The number of operating hours should be higher than 4800 h per year, and the electrolyser system capacity (or hydrogen refuelling station capacity) should be greater than 3.5 MW in order to reach a Net Present Value of 7,115,391 € with a Return of Investment set to 9 years. The result of the multiparametric sensitivity analysis for the Net Present Value (NPV) shows an 85.6% certainty that the project will have a positive result (i.e. profitability) (NPV> 0). The two main variables with the largest impact on Net Present Value are the electrolyser capacity (or hydrogen refuelling station capacity) and the hydrogen selling price. Moreover, a margin of improvement (higher NPV) could be reached with the monetization of the heat, oxygen by-product and CO2 emission reduction.  相似文献   

2.
Fault trees and event trees have for decades been the most commonly applied modelling tools in both risk analysis in general and the risk analysis of hydrogen applications including infrastructure in particular. It is sometimes found challenging to make traditional Quantitative Risk Analyses sufficiently transparent and it is frequently challenging for outsiders to verify the probabilistic modelling.Bayesian Networks (BN) are a graphical representation of uncertain quantities and decisions that explicitly reveal the probabilistic dependence between the variables and the related information flow. It has been suggested that BN represent a modelling tool that is superior to both fault trees and event trees with respect to the structuring and modelling of large complex systems. This paper gives an introduction to BN and utilises a case study as a basis for discussing and demonstrating the suitability of BN for modelling the risks associated with the introduction of hydrogen as an energy carrier.In this study we explore the benefits of modelling a hydrogen refuelling station using BN. The study takes its point of departure in input from a traditional detailed Quantitative Risk Analysis conducted by DNV during the HyApproval project. We compare and discuss the two analyses with respect to their advantages and disadvantages. We especially focus on a comparison of transparency and the results that may be extracted from the two alternative procedures.  相似文献   

3.
The two-step thermochemical metal oxide water-splitting cycle with the state-of-the-art material ceria inevitably produces unutilized high-quality heat, in addition to hydrogen (H2). This study explores whether the ceria cycle can be of greater value by using the excess heat for co-production of electricity. Specially, this technoeconomic study estimates the H2 production cost in a hybrid ceria cycle, in which excess heat produces electricity in an organic Rankine cycle, to increase revenue and decrease H2 cost. The estimated H2 cost from such a co-generation multi-tower plant is still relatively high at $4.55/kg, with an average H2 production of 1431 kg/day per 27.74 MWth tower. Sensitivity analyses show opportunities and challenges to achieving $2/kg H2 through improvements such as increased solar field efficiency, increased revenue from electricity sales, and a decreased capital recovery factor from baseline assumptions. While co-production improves overall system efficiency and economics, achieving $2/kg H2 remains challenging with ceria as the active material and likely will require a new material.  相似文献   

4.
The fuel quality of hydrogen dispensed from 10 refuelling stations in Europe was assessed. Representative sampling was conducted from the nozzle by use of a sampling adapter allowing to bleed sample gas in parallel while refuelling an FCEV. Samples were split off and distributed to four laboratories for analysis in accordance with ISO 14687 and SAE J2719. The results indicated some inconsistencies between the laboratories but were still conclusive. The fuel quality was generally good. Elevated nitrogen concentrations were detected in two samples but not in violation with the new 300 μmol/mol tolerance limit. Four samples showed water concentrations higher than the 5 μmol/mol tolerance limit estimated by at least one laboratory. The results were ambiguous: none of the four samples showed all laboratories in agreement with the violation. One laboratory reported an elevated oxygen concentration that was not corroborated by the other two laboratories and thus considered an outlier.  相似文献   

5.
The uncertainty and cost of changing from a fossil-fuel-based society to a hydrogen-based society are considered to be extensive obstacles to the introduction of fuel cell vehicles (FCVs). The absence of existing profitable refueling stations has been shown to be one of the major barriers. This paper investigates methods for calculating an optimal transition from a gasoline refueling station to future methane and hydrogen combined use with an on site small-scale reformer for methane. In particular, we look into the problem of matching the hydrogen capacity of a single refueling station to an increasing demand. Based on an assumed future development scenario, optimal investment strategies are calculated. First, a constant utilization of the hydrogen reformer is assumed in order to find the minimum hydrogen production cost. Second, when considerations such as periodic maintenance are taken into account, optimal control is used to concurrently find both a short term equipment variable utilization for one week and a long term strategy. The result is a minimum hydrogen production cost of $4–6/kg, depending on the number of reinvestments during a 20 year period. The solution is shown to yield minimum hydrogen production cost for the individual refueling station, but the solution is sensitive to variations in the scenario parameters.  相似文献   

6.
Road transportation consists of a significant contributor to total greenhouse gas emissions in developed countries. New alternative technologies in transportation such as electric vehicles aim to reduce substantially vehicle emissions, particularly in urban areas. Incentives of using two-wheel electric vehicles such as bicycles in big cities centres are promoted by local governments, and in fact, some countries are already trying to adopt this transition. An interesting case consists of the use of hydrogen fuel cells in such vehicles to increase their driving range under short refuelling times. To this end, this paper investigated the social and financial prospects of hydrogen infrastructure for city-oriented fuel cell electric vehicles such as bicycles. The results of the research indicated that a light mobility urban hydrogen refuelling station able to provide refuelling processes at pressures of 30 bar with a hydrogen fuel cost of 34.7 €/kgH2 is more favourable compared to larger stations.  相似文献   

7.
This paper investigates the optimal planning of microgrids including the hydrogen energy system through mixed-integer linear programming model. A real case study is analyzed by extending the only microgrid lab facility in Austria. The case study considers the hydrogen production via electrolysis, seasonal storage and fueling station for meeting the hydrogen fuel demand of fuel cell vehicles, busses and trucks. The optimization is performed relative to two different reference cases which satisfy the mobility demand by diesel fuel and utility electricity based hydrogen fuel production respectively. The key results indicate that the low emission hydrogen mobility framework is achieved by high share of renewable energy sources and seasonal hydrogen storage in the microgrid. The investment optimization scenarios provide at least 66% and at most 99% carbon emission savings at increased costs of 30% and 100% respectively relative to the costs of the diesel reference case (current situation).  相似文献   

8.
The number of hydrogen refuelling stations (HRSs) is steadily growing worldwide. In China, the first renewable hydrogen refuelling station has been built in Dalian for nearly 3 years. FLACS software based on computational fluid dynamics approach is used in this paper for simulation and analysis on the leakage and explosion of hydrogen storage system in this renewable hydrogen refuelling station. The effects of wind speed, leakage direction and wind direction on the consequences of the accident are analyzed. The harmful area, lethal area, the farthest harmful distance and the longest lethal distance in explosion accident of different accident scenarios are calculated. Harmful areas after explosion of different equipments in hydrogen storage system are compared. The results show that leakage accident of the 90 MPa hydrogen storage tank cause the greatest harm in hydrogen explosion. The farthest harmful distance caused by explosion is 35.7 m and the farthest lethal distance is 18.8 m in case of the same direction of wind and leakage. Moreover, it is recommended that the hydrogen tube trailer should not be parked in the hydrogen refuelling station when the amount of hydrogen is sufficient.  相似文献   

9.
Hydrogen refuelling stations are important for achieving sustainable hydrogen economy in low carbon transport and fuel cell electric vehicles. The solution presented in this paper provides us with a technology for producing carbon dioxide free hydrogen, which is an approach that goes beyond the existing large-scale hydrogen production technologies that use fossil fuel reforming. Hence, the main goal of this work was to design a hydrogen refuelling station to secure the autonomy of a hydrogen powered bicycle. The bicycle hydrogen system is equipped with a proton exchange membrane fuel cell stack of 300 W, a DC/DC converter, and a metal hydride storage tank of 350 NL of hydrogen. The hydrogen power system was made of readily available commercial components. The hydrogen station was designed as an off-grid system in which the installed proton exchange membrane electrolyzer is supplied with electric energy by direct conversion using photovoltaic cells. With the hydrogen flow rate of 2000 cc min−1 the hydrogen station is expected to supply at least 5 bicycles to be used in 20 km long city tourist routes.  相似文献   

10.
Wind power, the most promising renewable energy source in the world, plays an important role in the electricity markets. Wind power curtailment cannot be avoided in some countries due to its output has a special feature of randomness and volatility. Since the excess wind power being converted into hydrogen and sold to the hydrogen market will be the future trend. This study proposes a wind-electrolytic hydrogen storage system to participate in the electricity/hydrogen markets for selling electricity and hydrogen, which can help to improve the benefits of wind power in the electricity markets and addree the wind power curtailment effectively. With considering the uncertainties of wind power outputs and electricity prices, the optimal operation strategy is proposed with the objective of maximizing profits. The scenario-based stochastic method is adopted to describe the uncertainties, and the financial risk is evaluated using conditional value-at-risk. The operational problem of the proposed system is formulated into a mixed-integer linear programming model. Finally, the feasibility of the proposed operational strategy is validated by a case study. The results show that the expected revenue increases with the increase of the hydrogen selling price, indicating that investors can obtain profits by converting electricity into hydrogen. The optimal expected revenue increases by 33.42% when hydrogen price increases from 1.2 DKK/kWh to 1.8 DKK/kWh and the risk factor is equal to 0. Based on the analysis of the results, the importance of hydrogen can be proven.  相似文献   

11.
This paper proposes a novel method combining Pinch Methodology and waste hydrogen recovery, aiming to minimise fresh hydrogen consumption and waste hydrogen discharge. The method of multiple-level resource Pinch Analysis is extended to the level of Total Site Hydrogen Integration by considering fresh hydrogen sources with various quality. Waste hydrogen after Total Site Integration is further regenerated. The technical feasibility and economy of the various purification approaches are considered, demonstrated with a case study of a refinery hydrogen network in a petrochemical industrial park. The results showed that fresh hydrogen usage and waste hydrogen discharge could be reduced by 21.3% and 67.6%. The hydrogen recovery ratio is 95.2%. It has significant economic benefits and a short payback period for Total Site Hydrogen Integration with waste hydrogen purification. The proposed method facilitates the reuse of waste hydrogen before the purification process that incurs an additional environmental footprint. In line with the Circular Economy principles, hydrogen resource is retained in the system as long as possible before discharge.  相似文献   

12.
The present work sheds light on the green hydrogen future in Morocco. A detailed techno-economic assessment and evaluation of a hydrogen refuelling station powered by an on-grid photovoltaic system are presented and discussed. This station is designed to supply the fleet of taxis in a Moroccan city by assuming different scenarios to replace the current taxi system with fuel-cell electric vehicles. A model is proposed to estimate the daily demand for hydrogen, which is used to determine the sizing of the station's components. An economic analysis is then conducted to calculate the cost of hydrogen production. The technical results demonstrate that about 152 kg/day is required to supply the total fleet, while only 30.4 kg/day is enough to provide 20%. It is also found that the costs of hydrogen produced are inversely proportional to the capacity of the hydrogen refuelling station, and the hydrogen cost is about 9.18 $/kg for the larger station and 12.56 $/kg for the smaller one. The proposed system offers an attractive solution to enhance the country's development and reduce the consumption of hydrocarbon fuels.  相似文献   

13.
The expected increase of hydrogen fuel cell vehicles has motivated the emergence of a significant number of studies on Hydrogen Refuelling Stations (HRS). Some of the main HRS topics are sizing, location, design optimization, and optimal operation. On-site green HRS, where hydrogen is produced locally from green renewable energy sources, have received special attention due to their contribution to decarbonization. This kind of HRS are complex systems whose hydraulic and electric linked topologies include renewable energy sources, electrolyzers, buffer hydrogen tanks, compressors and batteries, among other components. This paper develops a linear model of a real on-site green HRS that is set to be built in Zaragoza, Spain. This plant can produce hydrogen either from solar energy or from the utility grid and is designed for three different types of services: light-duty and heavy-duty fuel cell vehicles and gas containers. In the literature, there is a lack of online control solutions developed for HRS, even more in the form of optimal online control. Hence, for the HRS operation, a Model Predictive Controller (MPC) is designed to solve a weighted multi-objective online optimization problem taking into account the plant dynamics and constraints as well as the disturbances prediction. Performance is analysed throughout 210 individual month-long simulations and the effect of the multi-objective weighting, prediction horizon, and hydrogen selling price is discussed. With the simulation results, this work shows the suitability of MPC for HRS control and its significant economic advantage compared to the rule-based control solution. In all simulations, the MPC operation fulfils all required services. Moreover, results show that a seven-day prediction horizon can improve profits by 57% relative to a one-day prediction horizon; that the battery is under-sized; or that the MPC operation strategy is more resolutive for low hydrogen selling prices.  相似文献   

14.
Increasing shares of intermittent power sources such as solar and wind will require biomass fueled generation more variable to respond to the increasing volatility of supply and demand. Furthermore, renewable energy sources will need to provide ancillary services. Biogas plants with excess generator capacity and gas storages can adapt the unit commitment to the demand and the market prices, respectively. This work presents a method of day-ahead unit commitment of biogas plants with excess generator capacity and gas storage participating in short-term electricity and control reserve markets. A biogas plant with 0.6 MW annual average electric output is examined in a case study under German market conditions. For this biogas plant different sizes of the power units and the gas storage are compared in consideration of costs and benefits of installing excess capacity. For optimal decisions depending on prices, a mixed-integer linear programming (MILP) approach is presented.The results show that earnings of biogas plants in electricity markets are increased by additional supplying control reserve. Furthermore, increasing the installed capacity from 0.6 MW to 1 MW (factor 1.7) leads to the best cost–benefit-ratio in consideration of additional costs of excess capacity and additional market revenues. However, the result of the cost–benefit-analysis of installing excess capacity is still negative. Considering the EEG flexibility premium, introduced in 2012 in the German renewable energy sources act, the result of the cost–benefit-analysis is positive. The highest profit is achieved with an increase of the installed capacity from 0.6 MW to 2 MW (factor 3.3).  相似文献   

15.
The transformation from a fossil fuels economy to a low carbon economy reshapes how energy is transmitted. Since most renewable energy is harvested in the form of electricity, hydrogen obtained from water electrolysis using green electricity is considered a promising energy vector. However, the storage and transportation of hydrogen at large scales pose challenges to the existing energy infrastructures, both regarding technological and economic aspects. To facilitate the distribution of renewable energy, a set of candidate hydrogen transportation infrastructures using methanol and ammonia as hydrogen carriers were proposed. A systematical analysis reveals that the levelized costs of transporting hydrogen using methanol and ammonia in the best cases are $1879/t-H2 and $1479/t-H2, respectively. The levelized cost of energy transportation using proposed infrastructures in the best case is $10.09/GJ. A benchmark for hydrogen transportation infrastructure design is provided in this study.  相似文献   

16.
Fuel cell (FC) propulsion for small (MTOW < 25 kg) Unmanned Aerial Vehicles (UAVs) provides a route for lower capital cost, environmentally friendlier and low noise operation. Most FC-based UAVs tested to date rely on compressed gas cylinders delivered to the point of use and used to refill the UAV hydrogen tanks on-site or chemical hydride systems to produce hydrogen on-board. An attractive alternative option is to produce hydrogen on-site from an off-grid renewable source according to the UAV fuel demand. A prototype off-grid solar-based hydrogen refuelling station for UAVs was developed for that purpose by Boeing Research & Technology Europe. A test program was carried out to evaluate the dynamic response of the hydrogen UAV refuelling system operating in an off-grid manner (disconnected from the AC grid). The system comprises a concentrated photovoltaic (CPV) array, an alkaline electrolyser, a low pressure hydrogen buffer tank and the required power electronics. The electrolyser was connected to the CPV source in an off-grid manner. The results from the off-grid tests are presented in this paper.  相似文献   

17.
Hydrogen (H2) shows promise as an energy carrier in contributing to emissions reductions from sectors which have been difficult to decarbonize, like industry and transportation. At the same time, flexible H2 production via electrolysis can also support cost-effective integration of high shares of variable renewable energy (VRE) in the power system. In this work, we develop a least-cost investment planning model to co-optimize investments in electricity and H2 infrastructure to serve electricity and H2 demands under various low-carbon scenarios. Applying the model to a case study of Texas in 2050, we find that H2 is produced in approximately equal amounts from electricity and natural gas under the least-cost expansion plan with a CO2 price of $30–60/tonne. An increasing CO2 price favors electrolysis, while increasing H2 demand favors H2 production from Steam Methane Reforming (SMR) of natural gas. H2 production is found to be a cost effective solution to reduce emissions in the electric power system as it provides flexibility otherwise provided by natural gas power plants and enables high shares of VRE with less battery storage. Additionally, the availability of flexible electricity demand via electrolysis makes carbon capture and storage (CCS) deployment for SMR cost-effective at lower CO2 prices ($90/tonne CO2) than for power generation ($180/tonne CO2). The total emissions attributable to H2 production is found to be dependent on the H2 demand. The marginal emissions from H2 production increase with the H2 demand for CO2 prices less than $90/tonne CO2, due to shift in supply from electrolysis to SMR. For a CO2 price of $60/tonne we estimate the production weighted-average H2 price to be between $1.30–1.66/kg across three H2 demand scenarios. These findings indicate the importance of joint planning of electricity and H2 infrastructure for cost-effective energy system decarbonization.  相似文献   

18.
As the popularity of fuel cell vehicles continues to rise in the global market, production and supply of low-carbon hydrogen are important to mitigate CO2 emissions. We propose a design for a hydrogen refueling station with a proton exchange membrane electrolyzer (PEM-EL)-based electrolysis system (EL-System) and photovoltaic generation (PV) to supply low-carbon hydrogen. Hydrogen is produced by the EL-System using electricity from PV and the power grid. The system was formulated as a mixed integer linear programming (MILP) model to allow analysis of optimal operational strategies. Case studies with different objective functions, CO2 emission targets, and capacity utilization of the EL-System were evaluated. Efficiency characteristics of the EL-System were obtained through measurements. The optimized operational strategies were evaluated with reference to three evaluation indices: CO2 emissions, capacity utilization, and operational cost of the system. The results were as follows: 1) Regardless of the objective function, the EL-System generally operated in highest efficiency state, and optimal operation depended on the efficiency characteristics of the EL-System; 2) mitigation of CO2 emissions and increase in capacity utilization of the EL-System required trade-offs; and 3) increased capacity utilization of the EL-System showed two opposing effects on hydrogen retail price.  相似文献   

19.
We present a comparative analysis of technical and economic aspects of ancillary services on the markets of England and Wales, Nordic Countries, California, Argentina, Australia and Spain, comparing the services of voltage control, frequency regulation and system restoration. All the analyzed markets rely on the existence of an administrator of ancillary services, function that leads to the figure of the system operator. Among the services analyzed, the mandatory nature of voltage control and primary frequency regulation stands out, being both the ancillary services with the higher market price and the shortest period of time requirements. In general, the recognized costs of the services correspond to investments operation, maintenance, and opportunity costs. In the provision of these ancillary services, there are no clear preferences for a particular resource allocation mechanism, where mandatory provision, auctions, competitive offers and different time length bilateral contracts are combined.  相似文献   

20.
The global climate and environmental crisis dictate the need for the development and implementation of environmentally friendly and efficient technical solutions, for example, generation based on renewable energy sources. However, the annually increasing demand for electricity (according to the forecasts of the U.S. Energy Information Administration, the amount of energy consumed for the period 2006–2030 will increase by 44 %) cannot be fully provided by alternative energy. The main reason is not so much the high cost of these technologies, like unstable power generation, which determines the need for an additional reserve of regulated power.The solution to this problem can be the combined use of generation based on renewable energy sources with energy storage units of large capacity. Currently, a promising direction is the use of excess electricity for the production of hydrogen and its further accumulation in hydrogen storage. In this case an additional energy can be generated using industrial fuel cells (electrochemical generators) to compensate for the power shortage.At the same time, the distinctive advantage of hydrogen energy storage systems lies in the ability to accumulate a large amount of energy for long periods of time. This fact makes it possible to increase the reliability of the functioning of the electric power system, to provide power supply with a sufficiently long interruption (in case of faults) or allocation for isolated operation.With an increase in the unit capacity and the share of renewable generation in the total installed capacity, researches that aimed to systematic analysis of the impact of the implemented generation unit and the energy storage system on the parameters of the mode of the electric power system become more relevant. There are a number of tasks can be noted related to determining the optimal location and size of the generation unit and energy storage systems being implemented in terms of reducing power losses and maintaining an appropriate voltage level in the nodes of the electric power system. In this article, a variant of solving the optimization task for a typical 15-bus IEEE scheme is presented by means of software calculation using the bubble sorting method. To achieve this goal, the following tasks were solved: the objective function, which indicates the optimal location and size of the generation unit, and constraints, for example, the available deviation of voltage level, were formed; the software implementation of the algorithm for calculating power flows and power losses using the bubble sorting method was carried out. The results of the work of the program code for two scenarios are presented: for instance, installation of one renewable generation unit with a different range of possible capacities, and are compared with the data obtained in the MATLAB/Simulink software package.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号