首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hollow carbon spheres are potential candidates for lightweight microwave absorbers. However, the skin effect of pure carbon-based materials frequently induces a terrible impedance mismatching issue. Herein, small-sized NiO/Ni particles with heterojunctions on the N-doped hollow carbon spheres (NHCS@NiO/Ni) are constructed using SiO2 as a sacrificing template. The fabricated NHCS@NiO/Ni displayed excellent microwave absorbability with a minimum reflection loss of −44.04 dB with the matching thickness of 2 mm and a wider efficient absorption bandwidth of 4.38 GHz with the thickness of 1.7 mm, superior to most previously reported hollow absorbers. Experimental results demonstrated that the excellent microwave absorption property of the NHCS@NiO/Ni are attributed to balanced dielectric loss and optimized impedance matching characteristic due to the presence of NiO/Ni heterojunctions. Theoretical calculations suggested that the redistribution of charge at the interfaces and formation of dipoles induced by N dopants and defects are responsible for the enhanced conduction and polarization losses of NHCS@NiO/Ni. The simulations for the surface current and power loss densities reveal that the NHCS@NiO/Ni has‑ applicable attenuation ability toward microwave under the practical application scenario. This work paves an efficient way for the reasonable design of small-sized particles with well-defined heterojunctions on hollow nanostructures for high-efficiency microwave absorption.  相似文献   

2.
《Advanced Powder Technology》2021,32(12):4697-4710
In the present study, Microwave absorbing Li-Sr, Li-Co ferrite nanoparticles and RGO/Li-Sr, RGO/Li-Co ferrite nanocomposites containing Li ferrite and reduced graphene oxide (RGO) were synthesized to further improve the microwave absorption performance of Li ferrite nanoparticles (LiFe5O8). The Li-Sr and Li-Co nanoparticles were synthesized by thermal treatment method, the RGO/Li-Sr and RGO/Li-Co nanocomposites were obtained by a polymerization method and were characterized by different techniques. The electromagnetic wave absorption properties of the samples were evaluated by vector network analyzer (VNA) in the frequency range of 2–18 GHz. The magnetic and dielectric loss, impedance matching, and electromagnetic wave absorption of the samples are significantly improved through the addition of RGO. Experimental results revealed that the RGO/Li-Co nanocomposite considerably increased microwave absorption. The minimum reflection loss (RL) of RGO/Li-Co also was found to reach −46.80 dB at the thickness of 3 mm and the effective absorption bandwidth (≤-10 dB) amounted to 6.80 GHz (from 10.52 to 17.32 GHz), which was much higher in comparison with pure Li and Li-Co ferrites nanoparticles. Due to the synergistic effect between magnetic loss and dielectric loss and the good impedance matching, the RGO/Li-Co nanocomposite may be regarded as a new candidate for microwave absorbing materials characterized with a broad effective absorption bandwidth at thin thicknesses.  相似文献   

3.
Flower-like Ni structures composed of leaf-like flakes were synthesized through a facile solvothermal approach independent of surfactants or magnetic force. The evolution of the morphology was closely related to the variation of NaOH and volume ratios of ethylene glycol to water. The microwave absorbing properties of the flower-like Ni wax-composite were evaluated based on the complex permittivity (εr = ε′ ? jε″) and permeability (µr = µ′ ? jµ″). The Ni wax-composite exhibited excellent microwave absorption performances with a minimum reflection loss of ?46.1 dB at 13.3 GHz, corresponding to a matching thickness of 2.0 mm. In particular, the absorption bandwidth of RL below ?10 dB was 3.6 GHz (11.7–15.3 GHz). The attenuation of microwave could be attributed to the dielectric loss and unique flower-like structure.  相似文献   

4.
The (Al2O3 + Ni) composite, (Al2O3 + Ni)/Ni and Al2O3/(Al2O3 + Ni)/Ni laminated materials were prepared by aqueous tape casting and hot pressing. Results indicated that the (Al2O3 + Ni) composite had higher strength and fracture toughness than those of pure Al2O3. The fracture toughness of (Al2O3 + Ni)/Ni and Al2O3/(Al2O3 + Ni)/Ni laminated materials was higher than not only those of pure Al2O3, but also those of Al2O3/Ni laminar with the same layer numbers and thickness ratio. It was found that the toughness of the Al2O3/(Al2O3 + Ni)/Ni laminated material with five layers and layer thickness ratio = 2 could reach 16.10 MPa m1/2, which were about 4.6 times of pure Al2O3. The strength and toughness of the (Al2O3 + Ni)/Ni laminated material with three layers and layer thickness ratio = 2 could reach 417.41 MPa and 12.42 MPa m1/2. It indicated the material had better mechanical property.  相似文献   

5.
Advanced carbon materials are constantly being used in the field of microwave absorption. Herein, in order to enrich the variety and expand the application fields of graphdiyne (GDY), the wrinkled graphene (RGO) nanosheet coated and embedded with GDY porous microspheres (RGO/GDY) are prepared by GDY synthesis, ultrasonic spray, and pyrolysis. The study finds that RGO and GDY have effective synergistic effects. The suitable pores and composition, conductive network formed by overlapping 0D and 2D materials, special surface and internal morphology design, and high-temperature activation process make RGO/GDY exhibit excellent impedance matching and attenuation capabilities. Under the best amount of GDY (20 mg), the particle sizes of the microspheres (≈6 µm), and filler content (27.5%), the minimum reflection loss (RLmin) is −58 dB@8.3 GHz, and the corresponding matching thickness is 2.7 mm. The effective absorption bandwidth is 4.3 GHz as the thickness is 1.9 mm. By adjusting the thickness, the absorber can completely absorb microwaves of all the C, X, and Ku bands. The microwave absorbing mechanisms are elucidated. GDY materials are first applied to the field of microwave absorption, enhancing the absorption performance of RGO/GDY. It provides a new way to manufacture electromagnetic wave absorbers with satisfactory performance.  相似文献   

6.
Developing various nanocomposite microwave absorbers is a crucial means to address the issue of electromagnetic pollution, but remains a challenge in satisfying broadband absorption at low thickness with dielectric loss materials. Herein, an ultra-broadband microwave metamaterial absorber (MMA) based on hollow carbon/MXene/Mo2C (HCMM) is fabricated by a multi-scale design strategy. The microscopic 1D hierarchical microtube structure of HCMM contributes to break through the limit of thickness, exhibiting a strong reflection loss of -66.30 dB (99.99997 wave absorption) at the thinnest matching thickness of 1.0 mm. Meanwhile, the strongest reflection loss of -87.28 dB is reached at 1.4 mm, superior to most MXene-based and Mo2C-based microwave absorbers. Then, the macroscopic 3D structural metasurface based on the HCMM is simulated, optimized, and finally manufactured. The as-prepared flexible HCMM-based MMA realizes an ultra-broadband effective absorption in the range of 3.7-40.0 GHz at a thickness of 5.0 mm, revealing its potential for practical application in the electromagnetic compatibility field.  相似文献   

7.
Multiwalled carbon nanotubes (MWCNTs)/Fe3O4 nanocomposites were synthesized via a simple low temperature solution method. The phase structures and morphologies of the composite were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The results showed that the Fe3O4 spheres of about 150 nm were linked with MWCNTs. The microwave absorption properties of the MWCNTs/Fe3O4 nanocomposites were measured by vector network analysis (VNA). A wide region of microwave absorption was achieved due to dual magnetic and dielectric losses. When the matching thickness is 2 mm, the reflection loss (RL) of the sample exceeding ?10 dB was obtained at the frequency range of 9.9–12.4 GHz, with an optimal RL of ?29.8 dB at 11.04 GHz. A possible mechanism of the improved microwave absorption properties of the composites was discussed.  相似文献   

8.
Guo  Jianming  Ye  Mingquan  Han  Aijun  Liao  Jun  Liu  Qingzhong  Yu  Gaoqiang 《Journal of Materials Science》2021,56(28):15985-15999

The greigite (Fe3S4)/reduced graphene oxide (RGO) hierarchical structural composites (F–R) with the Fe3S4 nanoparticles attached to the RGO layers were successfully prepared via a simple one-pot solvothermal method. The microwave absorption properties were evaluated by calculating the reflection loss (RL) values. The results show that the RGO content and the filler loading of composites in paraffin mixture are very critical to the microwave absorption properties because they can improve the electromagnetic parameters. Sample F–R-3 presents the best microwave absorption capacity, in which an optimum RL value of ??62.3 dB and an effective absorption bandwidth (EAB, RL value?<???10 dB) of 3.04 GHz (14.96–18 GHz) can be obtained when the matching thickness is only 1.29 mm. Meanwhile, the widest EAB reaches 4.08 GHz (13.92–18 GHz) at the matching thickness of only 1.37 mm. Impressively, when the matching thickness is in the range of 1.2–5.5 mm, all RL peaks are below ??20 dB, and the EAB can be 14.98 GHz (3.02–18 GHz), covering the whole C, X and Ku bands. The distinguished absorption property is mainly ascribed to the combined effect of strong loss ability and good impedance matching. Apparently, the F–R composite with strong absorption ability, thin thickness and wide EAB is suitable for the efficient microwave absorber.

Graphical abstract
  相似文献   

9.

Porous SiCN(Ti) composite ceramics with good microwave absorbing performance were fabricated by pyrolysis of solid polysilazane modified by tetrabutyl titanate. The introduction of Ti not only acted as active filler to react with free carbon in the matrix to form TiC, but also played the role as catalyst to promote the formation of SiC nanowires. Finally, SiCN(Ti) composite ceramics formed a microstructure containing multi-nanophases and multi-nano heterogeneous interfaces when annealing temperature reached 1500 °C. The complex microstructure annealed at 1500 °C made composite ceramics have good matching impedance, as well as greatly increase the interfacial polarization loss and dipole polarization loss. As a result, the TiC/SiC/SiCN composite ceramics showed the excellent performance of electromagnetic wave absorption in X band. The minimum reflection loss (RL) of samples was ??17.1 dB at the thickness of 1.9 mm, and the maximum effective absorption bandwidth (EAB) of composite ceramics was 3.2 GHz when the thickness of sample was 2.1 mm, which exhibited a promising prospect as a structural and microwave absorbing integration material.

  相似文献   

10.
CeO2/Co/C dodecahedrons composites with excellent microwave absorption performance were synthesized by using a hydrothermal method. ZIF-67/CeO2 was first prepared by introducing CeO2 into the precursor of ZIF-67 and then CeO2/Co/C composite was obtained after heat treatment. Impedance matching of the samples could be well adjusted by controlling the content of CeO2. Unique dodecahedral structure for more interfacial reflection and cerium dioxide oxygen vacancies enhance microwave absorption performance. Specifically, the CeO2/Co/C exhibited a minimum reflection loss of ?68.83 dB is observed at 5.92 GHz, while the thickness was 3.69 mm. The introduction of CeO2 effectively enhanced the impedance matching of the materials and improved the microwave absorption performance. Therefore, this CeO2/Co/C composite is a promising microwave absorber material with high performance.  相似文献   

11.
Nowadays, the rapidly development of advanced antidetection technology raises stringent requirements for microwave absorption materials (MAMs) to focus more attention on wider bandwidth, thinner thickness, and lower density. Adding magnetic medium to realize broadband absorption may usually result in the decline of service performance and accelerating corrosion of MAMs. Chiral MAMs can produce extra magnetic loss without adding magnetic medium due to the unique electromagnetic cross polarization effect. However, more efforts should be taken to furtherly promote efficient bandwidth of chiral MAMs and reveal attenuation mode and modulation method of chiral structure. Herein, a novel superhelical nano-microstructure based on chiral polyaniline and helical polypyrrole is successfully achieved via in situ polymerization strategy. The enhanced multiscale-chiral synergistic effect contributes to broaden effective absorption bandwidth, covering 8.6 GHz at the thickness of 3.6 mm, and the minimum reflection loss can reach −51.3 dB simultaneously. Besides, to further explain response modes and loss mechanism of superhelical nano-microstructures, the electromagnetic simulation and test analysis are applied together to reveal their synergistic enhancement attenuation mechanism. Taken together, this strategy gives a new thought of how to design, prepare, and optimize the hierarchical structure materials to achieving broadband and high-performance microwave absorption.  相似文献   

12.

In this paper, CaMnO3 and Ca0.97La (or Ti)0.03MnO3 powders were synthesized using mechanical ball milling technique and sintered at 1100°C for 12 h in an air atmosphere. Results showed that all the samples are single phase with an orthorhombic symmetry. Compared with the pure CaMnO3 sample, the Ca0.97La0.03MnO3 and Ca0.97Ti0.03MnO3 samples have higher complex permittivity and better microwave absorbing properties. These changes are caused by the doping-ion incorporating in CaMnO3 lattice and Ca vacancies, which could result in abundant dipoles and the local charge accumulation. The Ca0.97Ti0.03MnO3 sample exhibited the best microwave absorption performance, i.e. the minimum reflection loss was -46.9 dB with a matching thickness of 2.2 mm and effective absorption bandwidth reached 5.2 GHz with a thickness of only 1.8 mm. This study demonstrates that the CaMnO3 would be a potential material in the microwave absorbing field and needs further research.

  相似文献   

13.
The microwave absorption properties of the nanocrystalline NiZn ferrite (Zn0.5Ni0.5Fe2O4) and iron (α-Fe) microfibers with single-layer and double-layer structures were investigated in the frequency range of 2–18 GHz. The double-layer absorbers have much better microwave absorption properties than the single-layer absorbers, and the microwave absorption properties of the double-layer structure are influenced by the coupling interactions between the absorbing layer and matching layer. With the absorbing layer thickness 0.7 mm of α-Fe microfibers–wax composite and the matching layer thickness 1.5 mm of Zn0.5Ni0.5Fe2O4 microfibers–wax composite, the minimum reflection loss (RL) reaches about −71 dB at 16.2 GHz and the absorption band width is about 9.2 GHz ranging from 8.8 to 18 GHz with the RL value exceeding −10 dB. While, when the absorbing layer is the Zn0.5Ni0.5Fe2O4 microfibers–wax composite with thickness 1.8 mm and the matching layer is the α-Fe microfibers–wax composite with thickness 0.2 mm, the RL value achieves the minimum about −73 dB at 13.8 GHz and the absorption band width is about 10.2 GHz ranging from 7.8 to 18 GHz with the RL value exceeding −10 dB, which covers the whole X-band (8.2–12.4 GHz) and Ku-band (12.4–18 GHz).  相似文献   

14.
Novel porous ternary nanocomposite systems containing reduced graphene oxide (RGO)/polyaniline (PANI)/cuprous oxide (Cu2O) were prepared via one-step in situ redox method. The RGO/PANI/Cu2O nanocomposites present a flower-like structure with an average size of 2.0 μm in diameter. The morphologies and properties of the products can be controlled by adjusting the molar ratios of aniline to Cu2+. When the molar ratio of aniline to Cu2+ is 1:1, the product exhibits excellent microwave absorption property in the frequency range of 2–18 GHz. It can be seen that the maximum reflection loss (RL) of the ternary composite is up to ?52.8 dB at 2.7 GHz with a thickness of only 2 mm, and the absorption bandwidth corresponding to ?10 dB (90% of EM wave absorption) is 13.2 GHz. The microwave absorption property of ternary RGO/PANI/Cu2O composite is significantly improved due to its special flower-like porous structure, dielectric loss property and well impedance matching characteristics, which is 8.12 times than that of pure RGO and 5.28 times than that of pure PANI. Therefore, our study paves a new way to prepare the promising lightweight and high-performance composite materials combined with the characteristics of three components for electromagnetic absorption.  相似文献   

15.
《Advanced Powder Technology》2020,31(12):4642-4647
Hollow γ-MnO2 sphere was obtained by annealing the precursor at 400 °C with different holding time. The influences of different holding time on the morphology and crystalline structure of final products have been discussed in detail, and the microwave absorption properties of the as-products were also investigated. The results exhibited that finer crystalline feature of the γ-MnO2 and larger pore size in the hollow γ-MnO2 sphere could be obtained with the extended holding time. The MnO2/paraffin composites (50 wt% loading) present extraordinary microwave absorption performance, and the minimum reflection loss (RL) values is −51.3 dB at 4.9 GHz with the thickness of 3.5 mm. The excellent electromagnetic absorption properties can be ascribed to the hollow structure, perfect impedance matching behavior and the multiple interface polarization effect.  相似文献   

16.

In this study, we adopted a simple strategy of the arc discharge to prepare the B-doped SiC microwave nano-absorbers. Herein, the amorphous boron was selected as a doping B element source to tune the electromagnetic parameters of the SiC nanopowders. The experimental results indicate that the doping B in the SiC can conveniently tailor the microwave absorption capability of the SiC nanopowders. The appropriate doping B in the SiC can contribute to excellent synergistic effects among its defect dipoles, leakage, and magnetism. Among the doped SiC with B doping content of 0, 5, 10, and 15 at.%, the SiC with doping B content of 10 at.% acquired the optimized impedance matching and enhanced microwave absorption properties. And the optimal reflection loss (RL) value ? 51.2 dB at 6.76 GHz with a matching thickness of 2.9 mm is acquired. The RL of the B-doped SiC nanopowders with B doping content of 10 at.% exceeding ? 10 dB is about 3–5 times those of the other three samples in the ranges of 1–18 GHz at a matching thickness of 1.2–6.0 mm. Therefore, this work provided a feasible way to tune the microwave absorption properties of the B-doped SiC, which is of great significance to improve SiC-based high-temperature dielectric ceramics of microwave absorption performances by the defect-engineering strategy.

  相似文献   

17.
A novel kind of composite absorber, i.e. FePCB/graphene composite, with excellent microwave absorption properties was successfully fabricated by a simple and scalable ball milling method. After being milled, the FePCB particles displayed flaky morphology with large aspect ratio. The complex permittivity and permeability of the flaky FePCB distinctly increased compared with those before milling. Furthermore, with the introduction of graphene, the flaky FePCB/graphene composite exhibited excellent microwave absorption performance with strong absorption and wide absorption band. In particular, for FePCB/graphene composite with an absorber thickness of 2 mm, the reflection loss (RL) reached a minimum of −45.3 dB at 12.6 GHz and the effective absorption bandwidth (RL < −10 dB) covered 5.4 GHz. The enhanced microwave absorption performance of the FePCB/graphene composite was attributed to the high magnetic loss and improved impedance matching which were closely related to the flake-shaped FePCB particles and the introduction of graphene sheets.  相似文献   

18.
Metal dispersed TiO2 nanocomposites were prepared by milling process. The microwave absorbing characteristics of the prepared nanocomposites with epoxy were studied in the 8.2–12.4 GHz frequency range for the microwave absorption application. The measured relative complex permittivity of metal dispersed nanocomposite-epoxy indicates higher values in comparison to the pure TiO2-epoxy nanocomposite. The Reflection loss (RL) values were calculated for thickness from 0.1 to 2.2 mm with an interval of 0.1 mm and the maximum value of RL found for TiO2-epoxy nanocomposite was −4.96 dB at 10.21 GHz frequency for 2.0 mm thickness. Whereas, RL value is improved to a maximum value of −13.67 dB at 10.13 GHz with Al dispersion (1.8 mm thickness) and −7.24 dB at 10.38 GHz with Ni dispersion (1.3 mm thickness). This study suggests the effectiveness metal particles dispersion for the development of thin microwave absorbers as well as increasing the level of RL.  相似文献   

19.
High-temperature microwave absorbing materials are of great interest due to their ability to withstand high temperatures. Multi-walled carbon nanotubes (MWNTs) were surface modified by Ar plasma and Co0.5Ni0.5Fe2O4 nanoparticles were doped onto the surface of the MWNTs by a chemical co-precipitation method. Co0.5Ni0.5Fe2O4/MWNTs powders were then added to polyimide to prepare nanocomposites for microwave absorption. After plasma modification, the surface of the MWNTs produced carboxyl groups, which are beneficial for interfacial bonding between the MWNTs and PI. The glass transition temperature of the nanocomposites was 261 °C and their thermostability was preserved up to 500 °C. The maximum reflection loss (RL) value of nanocomposites containing 0.75 wt% modified MWNTs was ?24.37 dB and the frequency range where the RL value was less than ?10 dB was 5.1 GHz from 7.8 to 12.9 GHz.  相似文献   

20.

Biomass transformation is being considered as a green and sustainable strategy for carbon-based functional materials in many fields. To produce porous structure favorable for microwave absorption, we demonstrate herein the successful synthesis of macroporous carbon materials with cornstalk as a biomass precursor. It is found that two kinds of typical biological structures in cornstalk, linear vascular bundles and parenchyma cells, can be well preserved during high-temperature pyrolysis. Mercury intrusion porosimetry and N2 adsorption indicate that these cornstalk-derived carbon materials have very high porosity, which is mainly from desirable macroporous structure rather than conventional micro/mesopores. Electromagnetic (EM) analysis reveals that dielectric loss is the only pathway for the consumption of EM energy, and high pyrolysis temperature favors strong dielectric loss through conductive loss and interfacial polarization loss. Meanwhile, pyrolysis temperature also affects the matching degree of characteristic impedance. When the pyrolysis temperature reaches 750 °C, good dielectric loss and impedance matching endow the sample (CSC-750) with excellent microwave absorption performance, including strong reflection loss, broad response bandwidth, and relatively thin absorber thickness. The advantages of macroporous structure are further highlighted in impedance matching and multiple reflection by comparing with a macropore-free counterpart.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号