首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The aim of the present study is to demonstrate the production of hydrogen-rich fuel gas from J. curcas residue cake. A comprehensive experimental study for the production of hydrogen rich fuel gas from J. curcas residue cake via downdraft gasification followed by high temperature water gas shift catalytic treatment has been carried out. The gasification experiments are performed at different equivalence ratios and performance of the process is reported in terms of producer gas composition & its calorific value, gas production rate and cold gas efficiency. The producer gas is cleaned of tar and particulate matters by passing it through venturi scrubber followed by sand bed filter. The clean producer gas is then compressed at 0.6 MPa and bottled into a gas cylinder. The bottled producer gas and a simulated mixture of producer gas are then subjected to high temperature shift (HTS) catalytic treatment for hydrogen enriched gas production. The effect of three different operating parameters GHSV, steam to CO ratio and reactor temperature on the product gas composition and CO conversion is reported. From the experimental study it is found that, the presence of oxygen in the bottled producer gas has affected the catalyst activity. Moreover, higher concentration of oxygen concentration in the bottled producer gas leads to the instantaneous deactivation of the HTS catalyst.  相似文献   

2.
Co-production of hydrogen and methane by two-phase anaerobic digestion (AD) may offer a sustainable solution for the centralized treatment of food waste (FW), while ammonia accumulation is potentially encountered. A mesophilic two-phase AD was investigated for hydrogen and methane production from FW at varying ammonia concentrations. The process achieved a hydrogen yield of 47.7 mL/g VS and a methane yield of 335 mL/g VS by optimizing the organic loading rate (OLR) and recirculation ratio. Total ammonia nitrogen (TAN) concentration of 4044 mg/L corresponded to a threshold in the hydrogen reactor, above which ammonia would initiate inhibition of hydrogenogenesis and acidogenesis. Methane yield was recovered in the methane reactor after acute inhibiting effects of TAN below 5800 mg/L, while TAN above 6200 mg/L caused chronic inhibition of methanogens. Adjusting hydraulic retention time (HRT) and recirculation ratio in hydrogen and methane reactors reduced TAN to 960 and 2105 mg/L respectively, resulting in successful recovery was achieved in the hydrogen reactor but not in the methane reactor. The two-phase AD for methane and hydrogen production can be a promising solution for ammonia accumulation in AD from FW.  相似文献   

3.
The hydrogen economy requires the right conditions to produce hydrogen by sustainable routes and provide it to local and international markets for suitable applications. This study evaluated the political, economic, social, technological, legal, and environmental (PESTLE) conditions that can be instrumental in adopting hydrogen technologies most effectively by encapsulating aspects relevant to key stakeholders from hydrogen technology developers through to end-users. For instance, the analysis has shown that countries within a government effectiveness index of 0.5 and ?0.5 are leading the planning of hydrogen economies through strategic cooperation with hydrogen technology developers. Furthermore, the combination of a Doughnut and PESTLE analysis created a novel approach to assessing the adoption of hydrogen technologies while evaluating the impact of the hydrogen economy. For instance, the estimated ammonia demand in 2050 and subsequent anthropogenic nitrogen extraction rate will be about two and a half times more than the 2009 extraction rate.  相似文献   

4.
Hydrogen has attracted much attention as a next-generation energy resource. Among various technologies, one of the promising approaches for hydrogen production is the use of the reaction between Si and water, which does not require any heat, electricity, and light energy as an input. Notwithstanding the usefulness of Si as a prospective raw material of hydrogen production, the manufacturing process of Si requires a significant amount of energy. Therefore, as an alternative to pure Si, this study used a wasted Si sludge, generated though the manufacturing process of Si wafer, for the direct reuse. Thus, the Si-water reaction for the hydrogen generation was investigated in comparison with pure Si and Si sludge by employing X-ray absorption near edge structure (XANES) to evaluate the feasibility of hydrogen production with the use of Si sludge and to identify the influence of impurities contained in Si sludge. As a result, hydrogen was not produced with the use of Si sludge because of containing Al compound as the impurity. Through the XANES analysis, the formation of SiO(OH)2 was found as core-shell structure, which potentially would hinder the hydrogen generation.  相似文献   

5.
Considering the high calorific value and low-carbon characteristics of hydrogen energy, it will play an important role in replacing fossil energy sources. The production of hydrogen from renewable energy sources for electricity generation and electrolysis of water is an important process to obtain green hydrogen compared with classic low-carbon hydrogen production methods. However, the challenges in this process include the high cost of liquefied hydrogen and the difficulty of storing hydrogen on a large scale. In this paper, we propose a new route for hydrogen storage in metals, namely, electricity generation from renewable energy sources, electrolysis to obtain metals, and subsequent hydrogen production from metals and water. Metal monomers facilitate large-scale and long-term storage and transportation, and metals can be used as large-scale hydrogen storage carriers in the future. In this technical route, the reaction between metal and water for hydrogen production is an important link. In this paper, we systematically summarize the research progress, development trend, and challenges in the field of metal to hydrogen production. This study aim to aid in the development of this field.  相似文献   

6.
This article broadly reviews the state-of-the-art technologies for hydrogen production routes, and methods of renewable integration. It outlines the main techno-economic enabler factors for Australia to transform and lead the regional energy market. Two main categories for competitive and commercial-scale hydrogen production routes in Australia are identified: 1) electrolysis powered by renewable, and 2) fossil fuel cracking via steam methane reforming (SMR) or coal gasification which must be coupled with carbon capture and sequestration (CCS). It is reported that Australia is able to competitively lower the levelized cost of hydrogen (LCOH) to a record $(1.88–2.30)/kgH2 for SMR technologies, and $(2.02–2.47)/kgH2 for black-coal gasification technologies. Comparatively, the LCOH via electrolysis technologies is in the range of $(4.78–5.84)/kgH2 for the alkaline electrolysis (AE) and $(6.08–7.43)/kgH2 for the proton exchange membrane (PEM) counterparts. Nevertheless, hydrogen production must be linked to the right infrastructure in transport-storage-conversion to demonstrate appealing business models.  相似文献   

7.
Power to hydrogen is a promising solution for storing variable Renewable Energy (RE) to achieve a 100% renewable and sustainable hydrogen economy. The hydrogen-based energy system (energy to hydrogen to energy) comprises four main stages; production, storage, safety and utilisation. The hydrogen-based energy system is presented as four corners (stages) of a square shaped integrated whole to demonstrate the interconnection and interdependency of these main stages. The hydrogen production pathway and specific technology selection are dependent on the type of energy and feedstock available as well as the end-use purity required. Hence, purification technologies are included in the production pathways for system integration, energy storage, utilisation or RE export. Hydrogen production pathways and associated technologies are reviewed in this paper for their interconnection and interdependence on the other corners of the hydrogen square.Despite hydrogen being zero-carbon-emission energy at the end-use point, it depends on the cleanness of the production pathway and the energy used to produce it. Thus, the guarantee of hydrogen origin is essential to consider hydrogen as clean energy. An innovative model is introduced as a hydrogen cleanness index coding for further investigation and development.  相似文献   

8.
Producing syngas and hydrogen from biofuels is a promising technology in the modern energy. In this work results of authors’ research aimed at design of supported membranes for oxygen and hydrogen separation are reviewed. Nanocomposites were deposited as thin layers on Ni–Al foam substrates. Oxygen separation membranes were tested in CH4 selective oxidation/oxi-dry reforming. The hydrogen separation membranes were tested in C2H5OH steam reforming. High oxygen/hydrogen fluxes were demonstrated. For oxygen separation membranes syngas yield and methane conversion increase with temperature and contact time. For reactor with hydrogen separation membrane a good performance in ethanol steam reforming was obtained. Hydrogen permeation increases with ethanol inlet concentration, then a slight decrease is observed. The results of tests demonstrated the oxygen/hydrogen permeability promising for the practical application, high catalytic performance and a good thermochemical stability.  相似文献   

9.
The production of hydrogen through water electrolysis is a promising pathway to decarbonize the energy sector. This paper presents a techno-economic model of electrolysis plants based on multiple states of operation: production, hot standby and idle. The model enables the calculation of the optimal hourly dispatch of electrolyzers to produce hydrogen for different end uses. This model has been tested with real data from an existing installation and compared with a simpler electrolyzer model that is based on two states. The results indicate that an operational strategy that considers the multi-state model leads to a decrease in final hydrogen production costs. These reduced costs will benefit businesses, especially while electrolysis plants grow in size to accommodate further increases in demand.  相似文献   

10.
The use of fossil fuels is causing a huge environmental impact due to the emission of air pollutants, greenhouse gases, and other ground and water contaminants; also, these fuels are depleting; the world is facing an energy crisis in the years to come if no preventive actions are done. Renewable energies are arising as promising technologies that will complement and even replace conventional fuels shifting the global energy matrix to a cleaner and eco-friendly future. Microalgal biohydrogen is one of those emerging technologies that is showing positive results. This work provides an overview of the key parameters to produce hydrogen from microalgae especially from the genus Chlorella. Current status of chemical and biological hydrogen producing technologies is presented, along with the main metabolic processes for this purpose in microalgae, their characteristic enzymes, several strategies to induce hydrogen production, the key operation parameters and finally providing some remarks about scaling-up and industrial-scale applications.  相似文献   

11.
The performance analysis of a novel multi-generation (MG) system that is developed for electricity, cooling, hot water and hydrogen production is presented in this study. MG systems in literature are predominantly built on a gas cycle, integrated with other thermodynamic cycles. The aim of this study is to achieve better thermodynamic (energy and exergy) performance using a MG system (without a gas cycle) that produces hydrogen. A proton exchange membrane (PEM) utilizes some of the electricity generated by the MG system to produce hydrogen. Two Rankine cycles with regeneration and reheat principles are used in the MG configuration. Double effect and single effect absorption cycles are also used to produce cooling. The electricity, hot water, cooling effect, and hydrogen production from the multi-generation are 1027 kW, 188.5 kW, 11.23 kg/s and 0.9785 kg/h respectively. An overall energy and exergy efficiency of 71.6% and 24.5% respectively is achieved considering the solar parabolic trough collector (PTC) input and this can increase to 93.3% and 31.9% if the input source is 100% efficient. The greenhouse gas emission reduction of this MG system is also analyzed.  相似文献   

12.
Transitioning German road transport partially to hydrogen energy is among the possibilities being discussed to help meet national climate targets. This study investigates impacts of a hypothetical, complete transition from conventionally-fueled to hydrogen-powered German transport through representative scenarios. Our results show that German emissions change between ?179 and +95 MtCO2eq annually, depending on the scenario, with renewable-powered electrolysis leading to the greatest emissions reduction, while electrolysis using the fossil-intense current electricity mix leads to the greatest increase. German energy emissions of regulated pollutants decrease significantly, indicating the potential for simultaneous air quality improvements. Vehicular hydrogen demand is 1000 PJ annually, requiring 446–525 TWh for electrolysis, hydrogen transport and storage, which could be supplied by future German renewable generation, supporting the potential for CO2-free hydrogen traffic and increased energy security. Thus hydrogen-powered transport could contribute significantly to climate and air quality goals, warranting further research and political discussion about this possibility.  相似文献   

13.
Steam methane reforming (SMR) needs the reaction heat at a temperature above 800 °C provided by the combustion of natural gas and suffers from adverse environmental impact and the hydrogen separated from other chemicals needs extra energy penalty. In order to avoid the expensive cost and high power consumption caused by capturing CO2 after combustion in SMR, natural gas Chemical Looping Reforming (CLR) is proposed, where the chemical looping combustion of metal oxides replaced the direct combustion of NG to convert natural gas to hydrogen and carbon dioxide. Although CO2 can be separated with less energy penalty when combustion, CLR still require higher temperature heat for the hydrogen production and cause the poor sintering of oxygen carriers (OC). Here, we report a high-rate hydrogen production and low-energy penalty of strategy by natural gas chemical-looping process with both metallic oxide reduction and metal oxidation coupled with steam. Fe3O4 is employed as an oxygen carrier. Different from the common chemical looping reforming, the double side reactions of both the reduction and oxidization enable to provide the hydrogen in the range of 500–600 °C under the atmospheric pressure. Furthermore, the CO2 is absorbed and captured with reduction reaction simultaneously.Through the thermodynamic analysis and irreversibility analysis of hydrogen production by natural gas via chemical looping reforming at atmospheric pressure, we provide a possibility of hydrogen production from methane at moderate temperature. The reported results in this paper should be viewed as optimistic due to several idealized assumptions: Considering that the chemical looping reaction is carried out at the equilibrium temperature of 500 °C, and complete CO2 capture can be achieved. It is assumed that the unreacted methane and hydrogen are completely separated by physical adsorption. This paper may have the potential of saving the natural gas consumption required to produce 1 m3 H2 and reducing the cost of hydrogen production.  相似文献   

14.
Municipal solid waste has been used for bio-methane production for many years. However, both methane and carbon dioxide that is produced during bio-methanization increases the greenhouse gas emissions; therefore, hydrogen production can be one of the alternatives for energy production from waste. Hydrogen production from the organic substance was studied in this study with the waste activated sludge from the municipal wastewater treatment. High rated activated sludge (HRAS) process was applied for the treatment to reduce energy consumption and enhance the organic composition of WAS. The highest COD removal (76%) occurred with the 12 g/L organic fraction of municipal solid waste (OFMSW) addition at a retention time of 120 min. The maximum hydrogen and methane yields for the WAS was 18.9 mL/g VS and 410 mL/g VS respectively. Total carbon emission per g VS of the substrate (OFMSW + waste activated sludge) was found as 0.087 mmol CO2 and 28.16 mmol CO2 for dark fermentation and bio-methanization respectively. These kinds of treatment technologies required for the wastewater treatment plantcompensate it some of the energy needs in a renewable source. In this way, the HRAS process decreases the energy requirement of wastewater treatment plant, and carbon-rich waste sludge enables green energy production via lower carbon emissions.  相似文献   

15.
This article analyses exergy losses along hydrogen utilisation pathways recently discussed in Germany and other countries. As a renewable fuel hydrogen will be an important part of sustainable future economies. Hydrogen can be used in all sectors, especially in buildings, for mobility and in industry, e.g. in steel production or ammonia synthesis. However, hydrogen has to be produced in a sustainable way. The most promising production is via water electrolysis using renewable electricity. In the first part of this work, exergy analysis is made for the complete hydrogen pathways from production until final utilisation for energy supply in buildings. The second part will focus on pathways for mobility. In the third part, the results are compared with available alternatives to hydrogen such as direct use of electricity in building supply or mobility. The results for building energy supply show that firstly transportation in pipelines (mixture with natural gas and pure hydrogen) is very efficient. Secondly, major exergy losses are caused by the electrolyser. Thirdly, combustion of renewable hydrogen for room heating in common boilers cause the highest exergy losses, but the use of combined heat and power (CHP) units or fuel cells can improve the exergy efficiency substantially.  相似文献   

16.
Mixed transition metal oxides have garnered widespread interest as alternative electrocatalysts for the oxygen and hydrogen generation reactions; however, they tend to require extended synthetic routes, in addition to possessing limited electrocatalytic activities and stabilities. Herein, we report the observation of a synergistic effect between the non-precious metal oxides Mn3O4 and Co3O4 with CuO and NiO, wherein the resulting composites exhibit promising properties as catalysts for the alkaline water electrolysis process. The activities of these composites in both the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) were improved compared to their counterparts, and the dynamic potentials of these processes were reduced. Importantly, low overpotentials of 202 and 380 mV were found for the CuO–Mn3O4 composite catalysts for the OER and the HER at 10 mA/cm2, respectively. In addition, electrochemical impedance spectroscopy measurements showed a reduced impedance response for the composites, which was dominated by the relaxation of the intermediate frequency associated with the adsorption of the intermediate. Furthermore, the superior catalytic activities of the composites were attributed to their structural properties, high electroactive surface areas, fast electron transport kinetics, and good chemo-electrical bonding between Mn3O4 and CuO. Importantly, merging with a marketable silicon-based solar cells, the accumulated PV-EC water splitting device obtains greater hydrogen production under stimulated solar light irradiation. This work offers a typical demonstration and respected strategies for practical large-scale solar H2 production via an economical PV-EC technology.  相似文献   

17.
In this paper a dynamic membrane electrode assembly water transport model, based on the Finite Volume Method, is presented. The purpose of this paper is to provide an accessible and reproductible model capable of real time simulation. To this aim, a detailed explanation is provided regarding the equations and methods used to compute the physical-based fuel cell model. Additionally, the model is purposely developed using basic code (on Matlab?), to not be limited to a single programming language. Two phase water transport through multi-gaseous porous media (electrodes), interfacial transport, as well as diffusion, convection, and electro-osmosis within the polymer are considered. The main novelty relies in the restructuring of all equations into a single implicit system, which can iteratively be resolved through LU decomposition. This computationally efficient method allows the model to be capable of real-time simulation, by displaying the membrane water content profile evolution on a 3D figure. For nominal PEMFC operating conditions, a dry membrane reaches 35% of its final water concentration value after 2 s, and fully converges after 20 s. The final water content profile displays an 18% gradient (9 and 11 molecules per sulfonic acid sites on the anode and cathode sides, respectively). To calibrate and validate this model, mass transfer (flowmeter) and electrical (ohmmeter) methods have been applied.  相似文献   

18.
The purpose of this paper is to build the first Energy and Life Cycle Analysis (LCA) comparison between buses with internal combustion engine currently used in the city of Rosario, Province of Santa Fe, Argentina, and some technological alternatives and their variants focusing on buses with an electrical engine powered by compressed hydrogen that feet fuel cells of polymer electrolyte membrane (PEM). This LCA comprehend raw material extraction up to its consumption as fuel. Specifically, hydrogen production considering different production processes from renewable sources called “green hydrogen” (Velazquez Abad and Dodds, 2020) [1] and non-renewable sources called “grey hydrogen” (Velazquez Abad and Dodds, 2020) [1]. Renewable sources for hydrogen production are rapid cut densified poplar energy plantation, post-industrial wood residues such as chips pallets, and maize silage. For non-renewable hydrogen production sources are the local electrical power grid from water electrolysis and natural gas from the steam methane reforming process.Buses whose fuel would be renewable hydrogen, produced near the City of Rosario, Province of Santa Fe, Argentina, meet one of the main criteria of sustainability biofuels of the European Union (EU) taken into account Renewable Energy Directive (RED) 2009/28 [2] and EU RED Directive 2018/2001 [3] that need significant reduction on net greenhouse gases (GHG) from biomass origin row material respect fossil fuels. At least 70% of GHG would be avoided from its main fossil counterpart of the intern combustion engine (ICE), in the worst and current scenario of the emission factor of the electrical grid of Argentina in the point of use that is about 0.40 kg CO2eq/kWh with energy and environmental load of 100% in the allocation factor in the hydrogen production stage of the LCA analysis.  相似文献   

19.
Due to the increasingly serious environmental issues and continuous depletion of fossil resources, the steel industry is facing unprecedented pressure to reduce CO2 emissions and achieve the sustainable energy development. Hydrogen is considered as the most promising clean energy in the 21st century due to the diverse sources, high calorific value, good thermal conductivity and high reaction rate, making hydrogen have great potential to apply in the steel industry. In this review, different hydrogen production technologies which have potential to provide hydrogen or hydrogen-rich gas for the great demand of steel plants are described. The applications of hydrogen in the blast furnace (BF) production process, direct reduction iron (DRI) process and smelting reduction iron process are summarized. Furthermore, the functions of hydrogen or hydrogen-rich gas as fuels are also discussed. In addition, some suggestions and outlooks are provided for future development of steel industry in China.  相似文献   

20.
Distribution of oxygen isotope 18O concentration which was labeled in lanthanum strontium manganese (LSM) – yttria-stabilized zirconia (YSZ) cathode of a solid oxide fuel cell (SOFC) is predicted through numerical simulations using a three-dimensional microstructure which was reconstructed by a focused ion beam-scanning electron microscopy (FIB-SEM). The electrochemical reaction under the SOFC operation is first numerically simulated, then the unsteady 18O transport is simulated by coupling self-diffusion by concentration gradient, migration by the electrochemical potential field, and electrochemical reaction at the triple phase boundaries. Predicted results were compared with the measured 18O concentration by a secondary ion mass spectrometry taken at the intermediate plane of the reconstructed 3D microstructure, which showed qualitative consistency between them. Thus, from the direct correlation of the electrochemical reaction and 18O concentration in an actual electrode microstructure, influence of electrochemical reaction was discussed. The present approach provides useful information for the interpretation of the oxygen labeling experiment results, which can cultivate better understanding of the electrochemical reaction mechanism in the SOFC electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号