首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this research a 3D numerical study on a PEM fuel cell model with tubular plates is presented. The study is focused on the performance evaluation of three flow fields with cylindrical geometry (serpentine, interdigitated and straight channels) in a fuel cell. These designs are proposed not only with the aim to reduce the pressure losses that conventional designs exhibit with rectangular flow fields but also to improve the mass transport processes that take place in the fuel cell cathode. A commercial computational fluid dynamics (CFD) code was used to solve the numerical model. From the numerical solution of the fluid mechanics equations and the electrochemical model of Butler-Volmer different analysis of pressure losses, species concentration, current density, temperature and ionic conductivity were carried out. The results were obtained at the flow channels and the catalyst layers as well as in the gas diffusion layers and the membrane interfaces. Numerical results showed that cylindrical channel configurations reduced the pressure losses in the cell due to the gradual reduction of the angle at the flow path and the twist of the channel, thus facilitating the expulsion of liquid water from the gas diffusion layers and in turn promoting a high oxygen concentration at the triple phase boundary of the catalyst layers. Moreover, numerical results were compared to polarization curves and the literature data reported for similar designs. These results demonstrated that conventional flow field designs applied to conventional tubular plates have some advantages over the rectangular designs, such as uniform pressure and current density distributions among others, therefore they could be considered for fuel cell designs in portable applications.  相似文献   

2.
A steady-state three-dimensional non-isothermal computational fluid dynamics (CFD) model of a proton exchange membrane fuel cell is presented. Conservation of mass, momentum, species, energy, and charge, as well as electrochemical kinetics are considered. In this model, the effect of interfacial contact resistance is also included. The numerical solution is based on a finite-volume method. In this study the effects of flow channel dimensions on the cell performance are investigated. Simulation results indicate that increasing the channel width will improve the limiting current density. However, it is observed that an optimum shoulder size of the flow channels exists for which the cell performance is the highest. Polarization curves are obtained for different operating conditions which, in general, compare favorably with the corresponding experimental data. Such a CFD model can be used as a tool in the development and optimization of PEM fuel cells.  相似文献   

3.
The serpentine flow field is the leading type of flow field used today in proton exchange membrane (PEM) fuel cells and for this reason optimization of serpentine flow field design is extremely important. In this study, a unique technique developed in house is utilized to separately measure current density under the land and channel on a variety of serpentine flow field geometries. Each flow field is tested under a wide variety of operating conditions thereby providing guidance for the optimum design geometry. Experimental results show that generally flow fields with both thinner lands and thinner channels provide better overall performance. However, the optimal flow field designs are highly dependent on fuel cell operating parameters.  相似文献   

4.
This work presents an experimental investigation on the preferential accumulation of liquid water in the channels of a multiple serpentine PEMFC with 50 cm2 active area. Neutron imaging was used for visualizing the liquid water distribution during the cell operation for a wide range of operating conditions. Liquid water accumulation in the cathode channels was observed for most of the operating conditions, with a preferential accumulation in certain channels of the flow field. A statistical analysis was performed in order to determine the main characteristics of this accumulation (i.e. channel number and degree of accumulation). As cathode channels were positioned in vertical direction, it was found that gravity effects had an important influence in the accumulation, as well as the relative position of the channel with respect to the inlet and outlet locations. The gas flow direction had also a major impact on the water accumulation within the channels, with significantly more water accumulated in channels with upwards gas flow.  相似文献   

5.
The flow field of a bipolar plate distributes reactants for polymer electrolyte membrane (PEM) fuel cells and removes the produced water from the fuel cells. It greatly influences the performance of fuel cells, especially the concentration losses. Pin-type design, as one of the widely utilized flow field configurations, has the advantage of low pressure drop but the disadvantage of uneven flow distribution and stagnant areas. In this paper, a network-based optimization model was developed to optimize the pin-type flow field configuration. Two optimization cases, uniform flow distribution with and without considering reactant consumption along flow channels, were investigated and the corresponding optimized designs were developed. Three-dimensional numerical simulations of PEM fuel cell were conducted to validate the proposed optimization model and also to compare the performance of the fuel cells using the optimized designs and the regular pin-type design. The numerical results verified the designs generated with the present optimization model. Both the optimized designs exhibited substantially higher fuel cell performance compared to the regular pin-type configuration. Moreover, the optimized design with considering reactant consumption performed even better than the one without considering the consumption, emphasizing the significance of reactant consumption in the flow field optimization model.  相似文献   

6.
Water management is one of the important factors which determine the performance of a Proton Exchange Membrane (PEM) fuel cell using hydrogen as fuel. For developing efficient water management systems, it is important to know the potential locations of formation and the nature of distribution of liquid water in the fuel cell. In the present study a PEM fuel cell with three different types of flow distributors are modeled and numerically simulated to find out the water formation and distribution characteristics. The model is validated by comparing the simulated polarization curve to experimental data. It is found that the type of flow distributor used plays a major role in determining the distribution of liquid water in the cell. A parallel flow distributor exhibits poor water removal capabilities whereas a serpentine flow distributor exhibits better water removal. A mixed flow distributor is found to give better water distribution characteristics compared to the parallel and serpentine distributors. Further the effect of liquid water formation and distribution on the species transport, temperature distribution and current generation are also investigated.  相似文献   

7.
The water management in the air flow channel of a proton exchange membrane (PEM) fuel cell cathode is numerically investigated using the FLUENT software package. By enabling the volume of fraction (VOF) model, the air–water two-phase flow can be simulated under different operating conditions. The effects of channel surface hydrophilicity, channel geometry, and air inlet velocity on water behavior, water content inside the channel, and two-phase pressure drop are discussed in detail. The results of the quasi-steady-state simulations show that: (1) the hydrophilicity of reactant flow channel surface is critical for water management in order to facilitate water transport along channel surfaces or edges; (2) hydrophilic surfaces also increase pressure drop due to liquid water spreading; (3) a sharp corner channel design could benefit water management because it facilitates water accumulation and provides paths for water transport along channel surface opposite to gas diffusion layer; (4) the two-phase pressure drop inside the air flow channel increases almost linearly with increasing air inlet velocity.  相似文献   

8.
In this study, the steady-state performance and dynamic behavior of a commercial 10-cell Proton Exchange Membrane (PEM) fuel cell stack was experimentally investigated using a self-developed PEM fuel cell test stand. The start-up characteristics of the stack to different current loads and dynamic responses after current step-up to an elevated load were investigated. The stack voltage was observed to experience oscillation at air excess coefficient of 2 due to the flooding/recovery cycle of part of the cells. In order to correlate the stack voltage with the pressure drop across the cathode/anode, fast Fourier transform was performed. Dominant frequency of pressure drop signal was obtained to indicate the water behavior in cathode/anode, thereby predicting the stack voltage change. Such relationship between frequency of pressure drop and stack voltage was found and summarized. This provides an innovative approach to utilize frequency of pressure drop signal as a diagnostic tool for PEM fuel cell stack dynamic behaviors.  相似文献   

9.
Jixin Chen   《Journal of power sources》2010,195(4):1122-1129
In this study, the air–water two phase flow behavior in PEM fuel cell parallel channels with porous media inserts was experimentally investigated using a self-designed and manufactured transparent assembly. The visualization images of the two phase flow in channels with porous media inserts were presented and three patterns were summarized. Compared with the traditional hollow channel design, the novel configuration featured less severe two phase flow mal-distribution and self-adjustment to water amount in channels, although a higher pressure drop was introduced due to the porous media inserts. The dominant frequency of pressure drop signal was found to be a diagnostic tool for water behavior in channels. The novel flow channel design with porous media inserts may become a solution to the water management problem in PEM fuel cells.  相似文献   

10.
A proton exchange membrane (PEM) fuel cell has many distinctive features which make it an attractive alternative clean energy source. Some of those features are low start-up, high power density, high efficiency and remote applications. In the present study, a numerical investigation was conducted to analyse the flow field and reactant gas distribution in a PEM fuel cell channel with transversely inserted pin fins in the channel flow aimed at improving reactant gas distribution. A fin configuration of small hydraulic diameter was employed to minimise the additional pressure drop. The influence of the pin fin parameters, the flow Reynolds number, the gas diffusion layer (GDL) porosity on the reactant gas transport and the pressure drop across the channel length were explored. The parameters examined were optimized using a mathematical optimization code integrated with a commercial computational fluid dynamics code. The results obtained indicate that a pin fin insert in the channel flow considerably improves fuel cell performance and that optimal pin fin geometries exist for minimized pressure drop along the fuel channel for the fuel cell model considered. The results obtained provide a novel approach for improving the design of fuel cells for optimal performance.  相似文献   

11.
Electrochemical impedance spectroscopy is a suitable and powerful diagnostic testing method for fuel cells because it is non-destructive and provides useful information about fuel cell performance and its components. This paper presents the diagnostic testing results of a 120 W single cell and a 480 W PEM fuel cell short stack by electrochemical impedance spectroscopy. The effects of clamping torque, non-uniform assembly pressure and operating temperature on the single cell impedance spectrum were studied. Optimal clamping torque of the single cell was determined by inspection of variations of high frequency and mass transport resistances with the clamping torque. The results of the electrochemical impedance analysis show that the non-uniform assembly pressure can deteriorate the fuel cell performance by increasing the ohmic resistance and the mass transport limitation. Break-in procedure of the short stack was monitored and it is indicated that the ohmic resistance as well as the charge transfer resistance decrease to specified values as the break-in process proceeds. The effect of output current on the impedance plots of the short stack was also investigated.  相似文献   

12.
Flow maldistribution usually happens in PEM fuel cells when using common inlet and exit headers to supply reactant gases to multiple channels. As a result, some channels are flooded with more water and have less air flow while other channels are filled with less water but have excessive air flow. To investigate the impact of two-phase flow maldistribution on PEM fuel cell performance, a Volume of Fluid (VOF) model coupled with a 1D MEA model was employed to simulate two parallel channels. The slug flow pattern is mainly observed in the flow channels under different flow maldistribution conditions, and it significantly increases the gas diffusion layer (GDL) surface water coverage over the whole range of simulated current densities, which directly leads to poor fuel cell performance. Therefore, it is recommended that liquid and gas flow maldistribution in parallel channels should be avoided if possible over the whole range of operation. Increasing the gas stoichiometric flow ratio is not an effective method to mitigate the gas flow maldistribution, but adding a gas inlet resistance to the flow channel is effective in mitigating maldistribution. With a carefully selected value of the flow resistance coefficient, both the fuel cell performance and the gas flow distribution can be significantly improved without causing too much extra pressure drop.  相似文献   

13.
The worldwide water scarcity, especially in the developing countries and arid regions, forces people to rely on unsafe sources of drinking water. There is a pressing need for these regions to develop decentralized, small-scale water utilities. However, more than 50% of the total operating costs associated with such small-scale, water-utility operations are the cost of providing electricity to run water pumps. We think that advances in a variety of renewable and sustainable energy technologies offer considerable promise for reducing the energy required for the production and distribution of water by small-scale water utilities. This paper provides a comprehensive review of the potential for using proton exchange membrane (PEM) fuel cells to provide an alternative supply of drinking water. This system can eliminate the excessive energy requirements that are currently associated with water production. Such alternative water production processes are designed to increase the production rate of drinking water by reducing the amount of water required to humidify the reactant gases during stable cell performance. The principal operational components of PEM fuel cells are reviewed and evaluated, including air stoichiometry, pressure, and cell temperature. Hydrogen-fed fuel cell systems provide sufficient water to meet the potable water needs of a typical household. Furthermore, it is concluded that PEM fuel cells have great promise for decentralized, small-scale, water-production applications, because they are capable of generating sufficient quantities of potable water by operating at maximum power and by increasing the number of polymer membranes.  相似文献   

14.
The distribution of reactant gases in polymer electrolyte membrane fuel cells (PEMFCs) plays a pivotal role in current density distribution, temperature distribution, and water concentration. Problems such as flooding or drying of the membrane are caused by the non-uniformity of the above mentioned parameters resulting in a reduced membrane electrode assembly (MEA) life time. In this study, a new cascade type serpentine flow field is introduced and the concept of design is explained. The simulation results are in good agreement with the literature. The optimal channel to rib ratio is obtained using simulation results. The results show that the proposed flow field produces a uniform current density and local stoichiometry as well as an improved water management. It is also determined that the two phase numerical method can estimate experimental results correctly.  相似文献   

15.
Various flow field designs have been numerically investigated to evaluate the effect of pattern and the cross-sectional dimensions of the channel on the performance of a large active area PEM fuel cell. Three types of multiple-serpentine channels (7-channels, 11-channels and 14-channels) have been chosen for the 200 cm2 fuel cell investigated and numerically analysed by varying the width and the land of the channel. The CFD simulations showed that as the channel width decreases, as in the 14-channels serpentine case, the performance improves, especially at high current densities where the concentration losses are dominant. The optimum configuration, i.e. the 14-channels serpentine, has been manufactured and tested experimentally and a very good agreement between the experimental and modelling data was achieved. 4 channel depths have been considered (0.25, 0.4, 0.6 and 0.8 mm) in the CFD study to determine the effects on the pressure drop and water content. Up to 7% increase in the maximum reported current density has been achieved for the smallest depth and this due to the better removal of excess liquid water and better humidification of the membrane. Also, the influence of the air flow rate has been evaluated; the current density at 0.6 V increased by around 25% when air flow rate was increased 4 times; this is attributed to better removal of excess liquid water.  相似文献   

16.
In a proton exchange membrane (PEM) fuel cell, local current density can vary drastically in the lateral direction across the land and channel areas. It is essential to know the lateral current density variations in order to optimize flow field design and fuel cell performance. Thus the objective of this work is to directly measure the lateral current density variations in a PEM fuel cell with a serpentine flow field. Five 1 mm-width partially-catalyzed membrane electrode assemblies (MEA), each corresponding to a different location from the center of the gas channel to the center of the land area are used in the experiments. Current densities for fuel cells with each of the partially-catalyzed MEAs are measured and the results provide the lateral current density distribution. The measurement results show that in the high cell voltage region, local current density is the highest under the center of the land area and decreases toward the center of the channel area; while in the low cell voltage region local current density is the highest under the center of the channel area and decreases toward the center of the land area. Besides, the effects of cathode flow rates on the lateral current density distribution have also been studied. Furthermore, comparisons have also been made by using air and oxygen in the cathode and it is found that when oxygen is used the local current density under the land is significantly enhanced, especially in the low cell voltage region.  相似文献   

17.
This study investigates the effects of the relative humidity (RH) of the reactants on the cell performance and local transport phenomena in proton exchange membrane fuel cells with parallel and interdigitated flow fields. A three-dimensional model was developed taking into account the effect of the liquid water formation on the reactant transport. The results indicate that the reactant RH and the flow field design all significantly affect cell performance. For the same operating conditions and reactant RH, the interdigitated design has better cell performance than the parallel design. With a constant anode RH = 100%, for lower operating voltages, a lower cathode RH reduces cathode flooding and improves cell performance, while for higher operating voltages, a higher cathode RH maintains the membrane hydration to give better cell performance. With a constant cathode RH = 100%, for lower operating voltages, a lower anode RH not only provides more hydrogen to the catalyst layer to participate in the electrochemical reaction, but also increases the difference in the water concentrations between the anode and cathode, which enhances back-diffusion of water from the cathode to the anode, thus reducing cathode flooding to give better performance. However, for higher operating voltages, the cell performance is not dependent on the anode RH.  相似文献   

18.
A new algorithm is presented to integrate component balances along polymer electrolyte membrane fuel cell (PEMFC) channels to obtain three-dimensional results from a detailed two-dimensional finite element model. The analysis studies the cell performance at various hydrogen flow rates, air flow rates and humidification levels. This analysis shows that hydrogen and air flow rates and their relative humidity are critical to current density, membrane dry-out, and electrode flooding. Uniform current densities along the channels are known to be critical for thermal management and fuel cell life. This approach, of integrating a detailed two-dimensional across-the-channel model, is a promising method for fuel cell design due to its low computational cost compared to three-dimensional computational fluid dynamics models, its applicability to a wide range of fuel cell designs, and its ease of extending to fuel cell stack models.  相似文献   

19.
Among all types of fuel cells, attention is being drawn lately on high temperature Polybenzimidazole (PBI) PEM because their operative temperature range (120-180 °C) increases the tolerance to carbon monoxide. This feature allows working with low quality hydrogen produced by hydrocarbon reformation. Most of the literature on PBI PEM deals with membrane and MEA related issues, however, cell efficiency and specially, commercial feasibility are conditioned by other fuel cell components as bipolar plates. In the present study the focus is on the effect of the flow field geometry of high temperature PBI PEM composite bipolar plates on the overall performance of the cell. For this purpose, three different channel geometries are studied: two serpentine flow fields and parallel channels flow field. Results show that serpentine geometry yields higher performance though it introduces higher pressure drop along the cell as well.  相似文献   

20.
One of the most common types of flow field designs used in proton exchange membrane (PEM) fuel cells is the serpentine flow field. It is used for its simplicity of design, its effectiveness in distributing reactants and its water removal capabilities. The knowledge about where current density is higher, under the land or the channel, is critical for flow field design and optimization. Yet, no direct measurement data are available for serpentine flow fields. In this study a fuel cell with a single channel serpentine flow field is used to separately measure the current density under the land and channel, which is either catalyzed or insulated on the cathode. In this manner, a systematic study is conducted under a wide variety of conditions and a series of comparisons are made between land and channel current density. The results show that under most operating conditions, current density is higher under the land than that under the channel. However, at low voltage, a rapid drop off in current density occurs under the land due to concentration losses. The mechanisms for the direct measurement results and general guidelines for serpentine flow field design and optimizations are provided.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号