首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Demand for fossil fuels is increasing day by day with the increase in industrialization and energy demand in the world. For this reason, many countries are looking for alternative energy sources against this increasing energy demand. Hydrogen is an alternative fuel with high efficiency and superior properties. The development of hydrogen-powered vehicles in the transport sector is expected to reduce fuel consumption and air pollution from exhaust emissions. In this study, the use of hydrogen as a fuel in vehicles and the current experimental studies in the literature are examined and the results of using hydrogen as an additional fuel are investigated. The effects of hydrogen usage on engine performance and exhaust emissions as an additional fuel to internal combustion gasoline, diesel and LPG engines are explained. Depending on the amount of hydrogen added to the fuel system, the engine power and torque are increased at most on petrol engines, while they are decreased on LPG and diesel engines. In terms of chemical products, the emissions of harmful exhaust gases in gasoline and LPG engines are reduced, while some diesel engines increase nitrogen oxide levels. In addition, it is understood that there will be a positive effect on the environment, due to hydrogen usage in all engine types.  相似文献   

2.
The South Korean government promotes hydrogen-powered vehicles to reduce greenhouse gas (GHG) emissions but these vehicles use gray hydrogen while charging, which causes GHG emissions. Therefore, converting this fuel into green hydrogen is necessary to help reduce GHG emissions, which will incur investment costs of approximately USD 20 billion over a decade. In this study, a contingent valuation method is applied in an analysis to examine the extent to which consumers are willing to pay for green hydrogen charging compared to gray hydrogen charging. The results indicate that the monthly mean of willingness to pay per driver is 51,674 KRW (USD 45.85), equivalent to 4302 KRW per kg (USD 3.82). Additionally, consumers accept a 28.5% increase in the monthly average fuel expenses when converting to green hydrogen. These findings can be used in the development of pricing and energy use plans to finance the expansion of green hydrogen infrastructure.  相似文献   

3.
Hydrogen is an excellent alternative energy source, particularly for vehicles. Despite the expansion of a considerable number of infrastructures, such as hydrogen refueling stations, there is a lack of efficient inspection methods for monitoring the hydrogen fuel quality. In this study, a hydrogen impurity analyzer (HIA) based on mobile gas chromatography with a thermal conductivity detector is developed and evaluated for the quality assurance of hydrogen fuel. Accordingly, O2, N2, and Ar which help in monitoring air leaks at hydrogen refueling stations, and CH4, which can also be detected by HIA, are selected as target impurities. The HIA reached limits of detection of 2.93, 0.72, 0.84, and 1.54 μmol/mol for O2, Ar, N2, and CH4, respectively. Moreover, the ISO 14687 requirements are satisfied with respective HIA expanded uncertainties of 2.6, 8.7, 8.2, and 9.4% (coverage factor k = 2). The developed system is ISO-compliant and offers enhanced mobility for online inspections.  相似文献   

4.
Municipal solid waste has been used for bio-methane production for many years. However, both methane and carbon dioxide that is produced during bio-methanization increases the greenhouse gas emissions; therefore, hydrogen production can be one of the alternatives for energy production from waste. Hydrogen production from the organic substance was studied in this study with the waste activated sludge from the municipal wastewater treatment. High rated activated sludge (HRAS) process was applied for the treatment to reduce energy consumption and enhance the organic composition of WAS. The highest COD removal (76%) occurred with the 12 g/L organic fraction of municipal solid waste (OFMSW) addition at a retention time of 120 min. The maximum hydrogen and methane yields for the WAS was 18.9 mL/g VS and 410 mL/g VS respectively. Total carbon emission per g VS of the substrate (OFMSW + waste activated sludge) was found as 0.087 mmol CO2 and 28.16 mmol CO2 for dark fermentation and bio-methanization respectively. These kinds of treatment technologies required for the wastewater treatment plantcompensate it some of the energy needs in a renewable source. In this way, the HRAS process decreases the energy requirement of wastewater treatment plant, and carbon-rich waste sludge enables green energy production via lower carbon emissions.  相似文献   

5.
Developing cheap and highly durable non-noble metal catalysts for water electrolysis to sustainably produce hydrogen as alternatives to platinum-based catalysts is essential. Herein, we report graphene-encapsulated NiMo alloys as acid-stable non-noble metal catalyst electrodes. The graphene-encapsulated NiMo cathode showed a highly stable performance in the potential cycling test (10,000 cycles) from 0 to 5.0 A cm−2 and 100 h of durability at a 2.2 V constant cell voltage. A balance between catalytic activity and corrosion in acidic environments was achieved by tuning the number of N-doped graphene layers. Through their application in a full-cell PEM-type water electrolyzer, we verify that noble metal catalysts can be replaced by non-noble metal catalysts. Such cheap acid-stable non-noble metal electrodes have promising practical applications in PEM-type water electrolysis.  相似文献   

6.
Energy systems are increasingly exposed to variable surplus electricity from renewable sources, particularly photovoltaics. This study estimates the potential to use surplus electricity for power-to-gas with geo-methanation for Switzerland by integrated energy system and power-to-gas modelling. Various CO2 point sources are assessed concerning exploitable emissions for power-to-gas, which were found to be abundantly available such that 60 TWh surplus electricity could be converted to methane, which is the equivalent of the current annual Swiss natural gas demand. However, the maximum available surplus electricity is only 19 TWh even in a scenario with high photovoltaic expansion. Moreover, making this surplus electricity available for power-to-gas requires an ideal load shifting capacity of up to 10 times the currently installed pumped-hydro capacity. Considering also geological and economic boundary conditions for geo-methanation at run-of-river and municipal waste incinerator sites with nearby CO2 sources reduces the exploitable surplus electricity from 19 to 2 TWh.  相似文献   

7.
Ammonia represents one of the most promising potential solutions as energy vector and hydrogen carrier, having a higher potential to transport energy than hydrogen itself in a pressurized form. Furthermore, solid oxide fuel cells (SOFCs) can directly be fed with ammonia, thus allowing for immediate electrical power and heat generation. This paper deals with the analysis of the dynamic behavior of commercial SOFCs when fueled with ammonia. Several measurements at different temperatures have been performed and performances are compared with hydrogen and a stoichiometrically equivalent mixture of H2 and N2 (3:1 M ratio). Higher temperature led to smaller drops in voltage for both fuels, thus providing higher efficiencies. Ammonia resulted slightly more performant (48% at 760 °C) than hydrogen (45% at 760 °C), in short stack tests. Moreover, different ammonia-to-air ratios have been investigated and the stack area-specific resistance has been studied in detail by comparing numerical modeling predictions and experimental values.  相似文献   

8.
Alkaline water electrolysis is the most promising approach for the industrial production of green hydrogen. This study investigates the dynamic operational characteristics of an industrial-scale alkaline electrolyzer with a rated hydrogen production of 50 m3/h. Strategies for system control and equipment improvement in dynamic-mode alkaline electrolytic hydrogen production are discussed. The electrolyzer can operate over a 30%–100% rated power load, thereby facilitating high-purity (>99.5%) H2 production, competitive DC energy efficiency (4.01–4.51 kW h/Nm3 H2, i.e., 73.1%–65.0% LHV), and good gas–liquid fluid balance. A safe H2 content of 2% in O2 (50% LFL) can be guaranteed by adjusting the system pressure. In transient operation, the electrolyzer can realize minute-level power and pressure modulation with high accuracy. The results confirm that the proposed alkaline electrolyzer can absorb highly fluctuating energy output from renewables because of its capability to operate in a dynamic mode.  相似文献   

9.
This article broadly reviews the state-of-the-art technologies for hydrogen production routes, and methods of renewable integration. It outlines the main techno-economic enabler factors for Australia to transform and lead the regional energy market. Two main categories for competitive and commercial-scale hydrogen production routes in Australia are identified: 1) electrolysis powered by renewable, and 2) fossil fuel cracking via steam methane reforming (SMR) or coal gasification which must be coupled with carbon capture and sequestration (CCS). It is reported that Australia is able to competitively lower the levelized cost of hydrogen (LCOH) to a record $(1.88–2.30)/kgH2 for SMR technologies, and $(2.02–2.47)/kgH2 for black-coal gasification technologies. Comparatively, the LCOH via electrolysis technologies is in the range of $(4.78–5.84)/kgH2 for the alkaline electrolysis (AE) and $(6.08–7.43)/kgH2 for the proton exchange membrane (PEM) counterparts. Nevertheless, hydrogen production must be linked to the right infrastructure in transport-storage-conversion to demonstrate appealing business models.  相似文献   

10.
Hydrogen has the highest gravimetric energy density of all fuels; however, it has a low volumetric energy density, unfavorable for storage and transportation. Hydrogen is usually liquefied to meet the bulk transportation needs. The exothermic interconversion of its spin isomers is an additional activity to an already energy-intensive process. The most significant temperature drop occurs in the precooling cycle (between ?150 °C and up to ?180 °C) and consumes more than 50% of the required energy. To reduce the energy consumption and improve the exergy efficiency of the hydrogen liquefaction process, a new high-boiling component, Hydrofluoroolefin (HFO-1234yf), is added to the precooled mixed refrigerant. As a result, the specific energy consumption of precooling cycle reduces by 41.8%, from 10.15 kWh/kgLH2 to 5.90 kWh/kgLH2, for the overall process. The exergy efficiency of the proposed case increases by 43.7%; however, the total equipment cost is also the highest. The inflated cost is primarily due to the added ortho-to-para hydrogen conversion reactor, boosting the para-hydrogen concentration. From the perspective of bulk storage and transportation of liquid hydrogen, the simplicity of design and low energy consumption build a convincing case for considering the commercialization of the process.  相似文献   

11.
In this study, demonstration of a one-stage metal hydride hydrogen compressor (MH compressor) by using a BCC alloy was performed. It was estimated that V40Ti22Cr38 could compress approximately 1.6 wt% of hydrogen from 1.0 to 10 MPa in 20–140 °C temperature range from equilibrium theory via pressure-composition-isotherm measurements. For demonstration of an actual MH compressor, a kg-scale experimental system was set up; V40Ti22Cr38 (1.4 kg) was introduced into a 1-inch cylindrical vessel with a heat-medium flow tube outside. As a result, 1.0 MPa of hydrogen can be compressed into the hydrogen cylinder at >10 MPa by hydrogen absorption at 10 °C and desorption at 160 °C for 30 min each (1 cycle/h) to achieve a compression rate of 0.23 Nm3/h and indicate the potential of the practical MH compressors by using BCC alloy.  相似文献   

12.
TiCr2 with adding different amount of Mn (0, 2, 4 and 8 wt.%) alloys have been investigated. All alloys have C14-type main phase (gray color in SEM) and Ti minor phase (dark gray color in SEM). Rietveld fitting results proved that the lattice parameter a and cell volume of C14-type phase decreased with increasing Mn content. The first hydrogenation measurement manifest that all alloys have best activation properties and could be activated without any prior heat treatment and hydrogen exposure. However, introducing Mn led to the decrease of the first hydrogen absorption rate of TiCr2 alloy, which may be due to the decrease of cell volume of C14-type main phase. The first hydrogenation properties at low temperature and effect of air exposure of the alloy were discussed. The results showed that the maximum hydrogen absorption capacity at 0 °C was obviously higher than that at room temperature. In addition, TiCr2 alloy doped with minor amounts of Mn after long-time air exposure showed better hydrogenation performance. This may be due to the Mn additive acting as a deoxidizer. Finally, the first hydrogenation kinetic mechanisms of all alloys at different temperature were also studied by using the rate limiting step.  相似文献   

13.
Various metal nanoparticle catalysts supported on Vulcan XC-72 and carbon-nanomaterial-based catalysts were fabricated and compared and assessed as substitutes of platinum in microbial electrolysis cells (MECs). The metal-nanoparticle-loaded cathodes exhibited relatively better hydrogen production and electrochemical properties than cathodes coated with carbon nanoparticles (CNPs) and carbon nanotubes (CNTs) did. Catalysts containing Pt (alone or mixed with other metals) most effectively produced hydrogen in terms of overall conversion efficiency, followed by Ni alone or combined with other metals in the order: Pt/C (80.6%) > PtNi/C (76.8%) > PtCu/C (72.6%) > Ni/C (73.0%) > Cu/C (65.8%) > CNPs (47.0%) > CNTs (38.9%) > plain carbon felt (38.7%). Further, in terms of long-term catalytic stability, Ni-based catalysts degraded to a lesser extent over time than did the Cu/C catalyst (which showed the maximum degradation). Overall, the hydrogen generation efficiency, catalyst stability, and current density of the Ni-based catalysts were almost comparable to those of Pt catalysts. Thus, Ni is an effective and inexpensive alternative to Pt catalysts for hydrogen production by MECs.  相似文献   

14.
Mine sites are an ideal candidate to be decarbonised through the installation of variable renewables and storage. However, the operation of mine sites is dependent on many factors, including mineral price, which can vary significantly, leading to periods of inactivity. Therefore, for sites that have invested in renewable generation and storage, there exists a potential of stranded assets, which negatively impact their business case, potentially reducing investment in such equipment and, therefore, decarbonisation potential. The current study therefore has investigated the potential of using variable renewable energy coupled with thermal energy storage and biodiesel to supply heat to a mine site. With the base case established, the economic impact of lower or no mine operations on the net present value were evaluated. To reduce the impact of mine turndown, the potential of installing a hydrogen production facility in an effort to utilise the stranded assets was also undertaken. Preliminary results show the base case to be very economical with a net present cost of $151.4 M after 30 operational years. This value was reduced to $45.7 M and -$81.1 M if the mine only operated at half capacity or did not operate at all, respectively. The addition of hydrogen production powered by the installed variable renewable generation resulted in a slightly better net present value of $174.7 M if the mine operated as normal for 30 years. For the two other cases, the installation of an electrolyser resulted in significantly better results than if it had not been installed for the half capacity and no operation cases with net present costs of $90.9 M and -$7.1 M, respectively. A sensitivity analysis on these results show that while the hydrogen production only plays a minor role in site savings, a price of between $1.1/kg to $2.0/kg is necessary for the system to be economically justifiable. Therefore, the current study shows that the addition of an electrolyser can significantly reduce the risk of stranded assets in fully renewable mine sites by providing an additional revenue stream during mine turndown events.  相似文献   

15.
High-purity standards are required for hydrogen used in fuel cell vehicles. The relative abundance of contaminants is highly influenced by the production pathway. Hydrogen obtained from water electrolysis presents three main pollutants: Nitrogen, Oxygen and Water. Herein, the engineering and implementation of removal techniques in a commercial 50 kW alkaline electrolyzer are reported. The full system was characterized with various analytical techniques including gas chromatography and mass spectrometry. A reduction of contaminant levels compatible with ISO 14687:2019 standard was achieved. From cold start, 100 min of operation are required to reach the desired nitrogen levels. Oxygen was removed in one step with a catalytic converter. Drying of hydrogen was achieved by using an innovative vacuum assisted pressure swing adsorption system. Sub-ppm levels of water are obtained with a power consumption of only 0.5 kWh/kg H2 and 98.4% of product recovery.  相似文献   

16.
Heavy fossil fuels consumption has raised concerns over the energy security and climate change while hydrogen is regarded as the fuel of future to decarbonize global energy use. Hydrogen is commonly used as feedstocks in chemical industries and has a wide range of energy applications such as vehicle fuel, boiler fuel, and energy storage. However, the development of hydrogen energy in Malaysia is sluggish despite the predefined targets in hydrogen roadmap. This paper aims to study the future directions of hydrogen economy in Malaysia considering a variety of hydrogen applications. The potential approaches for hydrogen production, storage, distribution and application in Malaysia have been reviewed and the challenges of hydrogen economy are discussed. A conceptual framework for the accomplishment of hydrogen economy has been proposed where renewable hydrogen could penetrate Malaysia market in three phases. In the first phase, the market should aim to utilize the hydrogen as feedstock for chemical industries. Once the hydrogen production side is matured in the second phase, hydrogen should be used as fuel in internal combustion engines or burners. In the final phase hydrogen should be used as fuel for automobiles (using fuel cell), fuel-cell combined heat and power (CHP) and as energy storage.  相似文献   

17.
Supercritical water is a promising medium to convert plastics into hydrogen and other recyclable products efficiently. In previous research, supercritical water gasification characteristics investigations focus on thermoplastics instead of thermoset plastics due to its chemical, thermal and mechanical stability. Urea-formaldehyde (UF) plastics were selected as a typical kind of thermoset plastics for investigation in this paper and quartz tubes were used as the reactor in order to avoid the potential catalytic effect of metal reactor wall. Conversion characteristic were studied and the influence of different operating parameters such as temperature, reaction time, feedstock mass fraction and pressure were investigated respectively. The molar fraction of hydrogen could reach about 70% in 700 °C. Products in gas phase and solid phase were analyzed, and properties, chemical structures and inhibition mechanism of thermoset plastics was analyzed after comparing with polystyrene (PS) plastics. The result showed that increase of high temperature and long reaction time could promote gasification process, meanwhile the increase in the feedstock mass fraction would result in suppression of the gasification process. Finally, kinetic study of UF was carried out and the activation energy and pre-exponential factor of the Arrhenius equation were calculated as 30.09 ± 1.62 kJ/mol and 0.1199 ± 0.0049 min−1, respectively.  相似文献   

18.
Carbon nanostructure materials are becoming of considerable commercial importance, with interest growing rapidly over the decade since the discovery of carbon nanofibers. In this study, a new novel method is introduced to synthesize the carbon nanofibers by gas-phase, where a single-stage microwave-assisted chemical vapour deposition approach is used with ferrocene as a catalyst and acetylene and hydrogen as precursor gases. Hydrogen flow rate plays a significant role in the formation of carbon nanofibers, as being the carrier and reactant gas in the floating catalyst method. The effect of process parameters such as microwave power, radiation time and gas ratio of C2H2/H2 was investigated statistically. The carbon nanofibers were characterized using scanning and transmission electron microscopy and thermogravimetric analysis. The analysis revealed that the optimized conditions for carbon nanofibers production were microwave power (1000 W), radiation time (35 min) and acetylene/hydrogen ratio (0.8). The field emission scanning electron microscope and transmission electron microscope analyses revealed that the vertical alignment of carbon nanofibers has tens of microns long with a uniform diameter ranging from 115 to 131 nm. High purity of 93% and a high yield of 12 g of CNFs were obtained. These outcomes indicate that identifying the optimal values for process parameters is important for synthesizing high quality and high CNF yield.  相似文献   

19.
In the present study, the effects of hydrogen enrichment of methane are investigated numerically from the diffusion flame structure and emissions aspect. Fluent code is utilised as the simulation tool. In the first part of the study, four experiments were conducted using natural gas as fuel. A non-premixed burner and a back-pressure boiler were utilised as the experimental setup. The natural gas fuel consumption rate was changed between 22 Nm3/h and 51 Nm3/h. After the experimental studies, the numerical simulations were performed. The non-premixed combustion model with the steady laminar flamelet model (SFM) approach was used for the calculations. The methane-air extinction mechanism was utilised for the calculation of the chemical species. The numerical results were verified with the experimental results in terms of the flue gas emissions and flue gas temperature values. In the second part of the study, four different hydrogen-enriched methane combustion cases were simulated using the same methane-air extinction mechanism, which included the hydrogen oxidation mechanism as a sub mechanism. The same energy input (432 kW) was supplied into the boiler for all the studied cases. The obtained results show that the hydrogen addition to methane significantly change the diffusion flame structure in the combustion chamber. The hydrogen-enriched flames become broader and shorter with respect to the pure methane flame. This provides better mixing of the reactants and combustion products in the flame regions due to the use of a back-pressure boiler. In this way, the maximum flame temperature values and thermal NO emissions are reduced in the combustion chamber, when the hydrogen addition ratio is less than 15% by mass. The maximum temperature value is calculated as 2030 K for the case with 15% hydrogen addition ratio by mass, while it is 2050 K for the case without hydrogen enrichment. Therefore, it is determined that the hydrogen-enriched methane combustion in a back-pressure combustion chamber has the potential of reducing both the carbon and thermal NO emissions.  相似文献   

20.
Due to the increasingly serious environmental issues and continuous depletion of fossil resources, the steel industry is facing unprecedented pressure to reduce CO2 emissions and achieve the sustainable energy development. Hydrogen is considered as the most promising clean energy in the 21st century due to the diverse sources, high calorific value, good thermal conductivity and high reaction rate, making hydrogen have great potential to apply in the steel industry. In this review, different hydrogen production technologies which have potential to provide hydrogen or hydrogen-rich gas for the great demand of steel plants are described. The applications of hydrogen in the blast furnace (BF) production process, direct reduction iron (DRI) process and smelting reduction iron process are summarized. Furthermore, the functions of hydrogen or hydrogen-rich gas as fuels are also discussed. In addition, some suggestions and outlooks are provided for future development of steel industry in China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号