首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Rapid heating of coal particles in supercritical water (SCW) is the prerequisite for complete gasification, while there is a rapid precipitation of volatiles during this process. If the volatiles cannot be dissolved and diffused in time, side reaction is inclined to occur, especially coking. The solubility of the volatiles in SCW has not yet been studied because the composition is not simple and the corresponding interaction with SCW is complex. In this paper, polycyclic aromatic hydrocarbons (PAHs) were used as the volatile model compound. Molecular dynamics (MD) simulations focused on the dissolution of pure PAHs and PAHs mixtures in SCW were carried out. The investigation results indicated that the dissolution behavior of naphthalene was the most excellent in SCW, while heavy PAHs were sensitive to the thermodynamic state of water molecules. The light PAHs were liable to be dissolved, while heavy PAHs were more likely to be remained in the PAH droplet. Moreover, the increase of temperature and density has a positive impact on the dissolution of PAHs in the supercritical solvent. This work is prospective to provide a theoretical basis for ensuring efficient and complete gasification of coal and restraining side effects for hydrogen production.  相似文献   

2.
The technology of supercritical water gasification of coal can converse coal to hydrogen-rich gaseous products effectively and cleanly. However, the slugging problem in the tubular reactor is the bottleneck of the development of continuous large-scale hydrogen production from coal. The reaction of coal gasification in supercritical water was analyzed from the point of view of thermodynamics. A chemical equilibrium model based on Gibbs free energy minimization was adopted to predict the yield of gaseous products and their fractions. The gasification reaction was calculated to be complete. A supercritical water gasification system with a fluidized bed reactor was applied to investigate the gasification of coal in supercritical water. 24 wt% coal-water-slurry was continuously transported and stably gasified without plugging problems; a hydrogen yield of 32.26  mol/kg was obtained and the hydrogen fraction was 69.78%. The effects of operational parameters upon the gasification characteristics were investigated. The recycle of the liquid residual from the gasification system was also studied.  相似文献   

3.
The heating method of SCWG reactor is critical to system construction, and almost all existing reactors rely on external heat sources. In this article, the thermodynamic equilibrium model is established to predict the distribution of gasification products from supercritical water gasification of coal. The transformation rule of gas components in the SCWG process of coal and oxidation process of gasification products is explored. Especially, the influence of key parameters such as feedstock concentration, gasification temperature and pressure on the hydrogen yield during the gasification and oxidation processes is also discussed. Based on the above research, the autothermal gasification system for hydrogen production integrated supercritical water gasification of coal and oxidation of gasification products is proposed. The flow matching of supercritical water, coal slurry, and oxygen and its effect on the autothermal hydrogen yield are discussed. By optimizing the flow rate of the reactants, 80% of the hydrogen production efficiency is achieved.  相似文献   

4.
关宇  郭烈锦  裴爱霞 《太阳能学报》2007,28(10):1140-1145
在间歇式高压反应釜中,以碱性化合物K_2CO_3和Ca(OH)_2以及Ru/C为催化剂,对木质素在超临界水中的气化制氢特性进行了实验研究。结果表明:3种催化剂都有较好的催化作用,其中Ru/C的效果最佳,几种催化剂混合使用的效果要比单独一种催化剂使用时好,但是其提高的幅度不很明显。另外,随着温度的升高,H_2和CH_4的产气量以及氢转化率等都相应的升高。  相似文献   

5.
Gasification has the potential to convert biomass into gaseous mixtures that can be used for hydrogen production. Thermal gasification and supercritical water gasification are commonly used thermochemical methods for conversion of biomass to hydrogen. Supercritical water gasification handles wet biomass, thus eliminating the capital cost-intensive drying step. Thermal gasification is considered as an alternative means of producing hydrogen from microalgae where biomass has to be dried before gasification. The authors developed techno-economic models for assessment of the production of hydrogen through supercritical gasification and thermal gasification processes. Techno-economic assessment was based on developed process models. Equipment was sized and costs were estimated using the developed process models, and the product value was determined assuming 20 years of plant life. The economic assessment of supercritical water and thermal gasification show that 2000 dry tonnes/day plant requires total capital investments of 277.8 M$ and 215.3 M$ for hydrogen product values of $4.59 ± 0.10/kg and $5.66 ± 0.10/kg, respectively. The relatively higher yield obtained in supercritical water gasification compared to thermal gasification results in lower product value of hydrogen for supercritical water gasification, thereby making it more desirable. This cost of hydrogen is about 4 times the cost of hydrogen from natural gas. The sensitivity analysis indicates that biomass cost and yield are the most sensitive parameters in the economics of the supercritical or thermal gasification process; this signifies the importance of algal biomass availability. The techno-economic assessment helps to identify options for the production of hydrogen fuel through these novel technologies.  相似文献   

6.
Studies on the coal gasification process in supercritical water (SCW) were carried out with the ReaxFF molecular dynamics (MD) method, in which the Wiser model of the coal molecule was adopted. The results show that hydrogen production increases with increase of temperature and water–coal mass ratio. It is also found that the coal molecule breaks into small fragments before it reacts with water molecules. The detailed chemical reactions and pathways of hydrogen generation during the gasification process are disclosed. H ions are found to be the main source of hydrogen generation, and C–H–O compounds or radicals are the most essential reactants throughout the reactions producing H2 and H ions. OH ions can significantly accelerate the oxidization of organic fragments to produce C–H–O compounds and radicals, which explains how catalysts of alkali salts such as NaOH and KOH improve hydrogen production.  相似文献   

7.
The technology of supercritical water gasification (SCWG) of coal has a great prospect because it converts coal into hydrogen-rich gas products efficiently and cleanly. However, there are bottlenecks affecting the complete gasification of coal in supercritical water (SCW) without catalyst under moderate conditions. This work is to explore the restricted factor for complete gasification of coal in SCW by investigating the conversion mechanism. The conversion mechanism of SCWG of coal with and without K2CO3 is proposed. Polycyclic aromatic hydrocarbons (PAHs) with graphite phase structures are formed by the condensation of aromatic structures at 550–750 °C. It is the restricted factor due to its characteristic of difficulty to be gasified. There is no condensation of aromatic structures in the process of SCWG of coal with K2CO3, which effectively inhibited the formation of PAHs with graphite phase structures. K2CO3 dramatically promoted the SCWG of coal, leading to carbon gasification efficiency (CE) reaching 98.43%.  相似文献   

8.
Researches on reaction kinetics and mechanism are crucial to the application of hydrogen production technology by supercritical water gasification of coal from experiment to industrialization. Based on the migration mechanisms of nitrogen and sulfur in the process, this paper developed a general model including nitrogen and sulfur to study the generation path, consumption path and reaction rate of the gasification products. The parameters of the kinetic model were obtained by fitting the experimental data of the gasification products, and the activation energy of each reaction was obtained by the Arrhenius equation. By comparing the reaction rates among the various reactions, the reaction steps for controlling the production or digestion of the product could be obtained. The main source of ammonia production was pyrolysis of coal followed by steam reforming reaction of fixed carbon. The rate of ammonia contribution from ammonia synthesis was extremely low and could be ignored. The consumption path of ammonia was the decomposition reaction of ammonia though its rate was also slow. The pyrolysis reaction of coal was the main source of hydrogen sulfide, followed by the steam reforming reaction of fixed carbon. The difference of the concentration and reactivity between organic sulfur and inorganic sulfur caused the difference in the generation source of hydrogen sulfide in early and late stage of the gasification. The kinetic model can predict not only the production of hydrogen, methane, carbon dioxide, carbon monoxide, ammonia and hydrogen sulfide under different operating conditions, but also the products for different coal types, which may provide a theoretical basis for the targeted regulation of nitrogen and sulfur elements in supercritical water.  相似文献   

9.
A novel receiver/reactor driven by concentrating solar energy for hydrogen production by supercritical water gasification (SCWG) of biomass was designed, constructed and tested. Model compound (glucose) and real biomass (corncob) were successfully gasified under SCW conditions to generate hydrogen-rich fuel gas in the apparatus. It is found that the receiver/reactor temperature increased with the increment of the direct normal solar irradiation (DNI). Effects of the DNI, the flow rates and concentration of the feedstocks as well as alkali catalysts addition were investigated. The results showed that DNI and flow rates of reactants have prominent effects on the temperature of reactor wall and gasification results. Higher DNI and lower feed concentrations favor the biomass gasification for hydrogen production. The encouraging results indicate a promising approach for hydrogen production with biomass gasification in supercritical water using concentrated solar energy.  相似文献   

10.
Supercritical water gasification (SCWG) of coal is a promising technology for clean coal utilization. In this paper, hydrogen production by catalytic gasification of coal in supercritical water (SCW) was carried out in a micro batch reactor with various alkaline catalysts: Na2CO3, K2CO3, Ca(OH)2, NaOH and KOH. H2 yield in relation to the alkaline catalyst was in the following order: K2CO3 ≈ KOH ≈ NaOH > Na2CO3 > Ca(OH)2. Then, hydrogen production by catalytic gasification of coal with K2CO3 was systematically investigated in supercritical water. The influences of the main operating parameters including feed concentration, catalyst loading and reaction temperature on the gasification characteristics of coal were investigated. The experimental results showed that carbon gasification efficiency (CE, mass of carbon in gaseous product/mass of carbon in coal × 100%) and H2 yield increased with increasing catalyst loading, increasing temperature, and decreasing coal concentration. In particular, coal was completely gasified at 700 °C when the weight ratio of K2CO3 to coal was 1, and it was encouraging that raw coal was converted into white residual. At last, a reaction mechanism based on oxygen transfer and intermediate hybrid mechanism was proposed to understand coal gasification in supercritical water.  相似文献   

11.
In this study, response surface methodology (RSM) combined with a 3–factor and 3–level Box–Behnken design (BBD) was performed to obtain high yield hydrogen production from hydrothermal co–gasification of sorghum biomass and low rank Çan lignite in a batch type reactor at 500 °C. The individual and the combined effects of the process parameters of coal amount (%) of the coal/biomass mixtures, initial water volume (mL) of the reactor and amount of the coal/biomass mixtures (kg) on system pressure, total gas yield, hydrogen production and product distribution were determined. Water volume directly affected the system pressure and the reaction medium was supercritical water medium above 48.2 mL with a pressure of 22.06 MPa. The highest values of both total gas volume and hydrogen gas volume were reached by gasification of 5.0 g of feedstock. It has been observed that total gas volume and hydrogen volume were directly affected by the water volume in the reactor and the coal ratio of the coal-biomass mixtures. The highest total gas and hydrogen volumes can be achieved under the conditions where the higher levels of water volume of the reactor and lower levels of coal percentage of the coal/biomass mixture were combined. Optimum conditions for maximum hydrogen production with 5.0 g of coal/biomass mixture were determined with numerical optimization as coal percentage of 25.6% and initial water volume of 68.5 mL. By combining the impregnated K2CO3 (3%, (w/w)) and CaO catalysts an excellent hydrogen selectivity was achieved. The hydrogen selectivity was drastically increased from 32.0% to 70.8% by capturing more than 99% of CO2 with a H2/CO2 mol ratio of 88.5.  相似文献   

12.
A novel system of hydrogen production by biomass gasification in supercritical water using concentrated solar energy has been constructed, installed and tested at the State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF). The “proof of concept” tests for solar-thermal gasification of biomass in supercritical water (SCW) were successfully carried out. Biomass model compounds (glucose) and real biomass (corn meal, wheat stalk) were gasified continuously with the novel system to produce hydrogen-rich gas. The effect of direct normal solar irradiation (DNI) and catalyst on gasification of biomass was also investigated. The results showed that the maximal gasification efficiency (the mass of product gas/the mass of feedstock) in excess of 110% were reached, hydrogen fraction in the gas product also approached to 50%. The experimental results confirmed the feasibility of the system and the advantage of the process, which supports future work to address the technical issues and develop the technology of solar-thermal hydrogen production by gasification of biomass in supercritical water.  相似文献   

13.
Partial oxidative gasification in supercritical water is a new technology for hydrogen production from biomass. Firstly in this paper, supercritical water partial oxidative gasification process was analyzed from the perspective of theory and chemical equilibrium gaseous product was calculated using the thermodynamic model. Secondly, the influence of oxidant equivalent ratio on partial oxidative gasification of model compounds (glucose, lignin) and real biomass (corn cob) in supercritical water was investigated in a fluidized bed system. Experimental results show that oxidant can improve the gasification efficiency, and an appropriate addition of oxidant can improve the yield of hydrogen in certain reaction condition. When ER equaled 0.4, the gasification efficiency of lignin was 3.1 times of that without oxidant. When ER equaled 0.1, the yield of hydrogen from lignin increased by 25.8% compared with that without oxidant. Thirdly, the effects of operation parameters including temperature, pressure, concentration, and flow rate of feedstock on the gasification were investigated. The optimal operation parameters for supercritical water partial oxidative gasification were obtained.  相似文献   

14.
Hydrogen can be produced from biomass materials via thermochemical conversion processes such as pyrolysis, gasification, steam gasification, steam-reforming, and supercritical water gasification (SCWG) of biomass. In general, the total hydrogen-rich gaseous products increased with increasing pyrolysis temperature for the biomass sample. The aim of gasification is to obtain a synthesis gas (bio-syngas) including mainly H2 and CO. Steam reforming is a method of producing hydrogen-rich gas from biomass. Hydrothermal gasification in supercritical water medium has become a promising technique to produce hydrogen from biomass with high efficiency. Hydrogen production by biomass gasification in the supercritical water (SCW) is a promising technology for utilizing wet biomass. The effect of initial moisture content of biomass on the yields of hydrogen is good.  相似文献   

15.
A novel thermochemical method for solar hydrogen production was proposed by state key laboratory of multiphase flow in power engineering (SKLMFPE) of Xi’an Jiaotong University. In this paper, a technical and economic evaluation of the new solar hydrogen production technology was conducted. Firstly, the advantages of this new solar hydrogen production process, compared with other processes, were assessed and thermodynamic analysis of the new process was carried out. The results show that biomass gasification in supercritical water driven by concentrating solar energy may be used to achieve high efficiency solar thermal decomposition of water and biomass for hydrogen production. Secondly, the hydrogen production cost was analyzed using the method of the total annual revenue requirement. The estimated hydrogen production cost was 38.46RMB/kg for the experimental demonstration system with a treatment capacity of 1 ton wet biomass per hour, and it would be decreased to 25.1 RMB/kg if the treatment capacity of wet biomass increased from 1 t/h to 10 t/h. A sensitivity analysis was also performed and influence of parameters on the hydrogen production cost was studied. The results from technical and economic evaluation show that supercritical water gasification of biomass driven by concentrated solar energy is a promising technology for hydrogen production and it is competitive compared to other solar hydrogen production technologies.  相似文献   

16.
Co–gasification of low rank lignite (Çan) with sorghum energy crop was investigated under low temperature conditions with supercritical water (773 K, 26.9 MPa). The effects of the water volume in the reactor, blending ratios of the coal/sorghum mixtures, the use of different catalysts, and the variation of feedstock concentrations on the gasification efficiency, product distribution, and hydrogen yields were evaluated. Synergistic effects were observed for both the gasification efficiency and the hydrogen yield with a coal content of 25 wt% in the coal/biomass mixture. Increasing the initial water volume, decreasing the feedstock concentration, and using the alkali metal catalysts Na2CO3 and K2CO3 significantly increased the gasification efficiency and the hydrogen yield. In experiments with CaO, almost all the carbon dioxide formed was isolated from the gas product during gasification, and the hydrogen yield was more than 70%. The liquid products were mainly composed of alkylphenols and their derivatives.  相似文献   

17.
Research on hydrogen production from coal gasification is mainly focused on the formation of CO and H2 from coal and water vapor in high-temperature environments. However, in the process of underground coal gasification, the water gas shift reaction of low-temperature steam will absorb a lot of heat, which makes it difficult to maintain the combustion of coal seams in the process of underground coal gasification. In order to obtain high-quality hydrogen, a pure oxygen-steam gasification process is used to improve the gasification efficiency. And as the gasification surface continues to recede, the drying, pyrolysis, gasification and combustion reactions of underground coal seams gradually occur. Direct coal gasification can't truly reflect the process of underground coal gasification. In order to simulate the hydrogen production laws of different coal types in the underground gasification process realistically, a two-step gasification process (pyrolysis of coal followed by gasification of the char) was proposed to process coal to produce hydrogen-rich gas. First, the effects of temperature and coal rank on product distribution were studied in the pyrolysis process. Then, the coal char at the final pyrolysis temperature of 900 °C was gasified with pure oxygen-steam. The results showed that, the hydrogen production of the three coal chars increased with the increase of temperature during the pyrolysis process, the hydrogen release from Inner Mongolia lignite and Xinjiang long flame coal have the same trend, and the bimodality is obvious. The hydrogen release in the first stage mainly comes from the dehydrogenation of the fat side chain, and the hydrogen release in the second stage mainly comes from the polycondensation reaction in the later stage of pyrolysis, and the pyrolysis process of coal contributes 15.81%–43.33% of hydrogen, as the coal rank increases, the hydrogen production rate gradually decreases. In the gasification process, the release of hydrogen mainly comes from the water gas shift reaction, the hydrogen output is mainly affected by the quality and carbon content of coal char. With the increase of coal rank, the hydrogen output gradually increases, mainly due to the increasing of coal coke yield and carbon content, The gasification process of coal char contributes 56.67–84.19% of hydrogen, in contrast, coal char gasification provides more hydrogen. The total effective gas output of the three coal chars is 0.53–0.81 m3/kg, the hydrogen output is 0.3–0.43 m3/kg, and the percentage of hydrogen is 53.08–56.60%. This study shows that two-step gasification under the condition of pure oxygen-steam gasification agent is an efficient energy process for hydrogen production from underground coal gasification.  相似文献   

18.
Supercritical water gasification is an innovative thermochemical conversion method for converting wet feedstocks into hydrogen-rich gaseous products. The non-catalytic gasification characteristics of Victorian brown coal were investigated in supercritical water by using a novel immersion technique with quartz batch reactors. Various operating parameters such as temperature, feed concentration and reaction time were varied to investigate their effect on the gasification behaviour. Gas yields, carbon gasification efficiency and the total gasification efficiency increased with increasing temperature and reaction time, and decreasing feed concentration. The mole fraction of hydrogen in the product gases was lowest at 600 °C, and increased to over 30 % at a temperature of 800 °C. Varying parameters, especially reaction time, did not improve the coal utilisation for gas production significantly and the measured data showed a large deviation from the equilibrium level.  相似文献   

19.
Supercritical water gasification (SCWG)having been developed for over 30 years is an efficient and clean hydrogen production technology. Biomass and coal are often used as good raw materials of SCWG, meanwhile achieving their clean conversion and utilization. However, salts such as sodium sulfate, generally exist in the raw materials and can poison the necessary catalyst during SCWG, so that they should be removed as much as possible before the raw materials are pumped into the catalytic reactor. Additionally, a large amount of inorganic salts will be generated simultaneously during the gasification reaction. As the solubility of various inorganic salts decreases sharply beyond the water critical temperature, salts in the supercritical water easily separate out and deposit on the walls of equipment and piping, resulting in a series of potential issues such as reduced heat-transfer efficiency, increased flow resistance and even the related-facilities blockage. In this paper, the experimental analysis and numerical simulation for the solubility and deposition characteristics of the sodium sulfate in supercritical water are systematically summarized; on this basis the corresponding deposition and plugging mechanisms are described and analysed. Additionally, this paper also introduces the potential technical methods being able of avoiding the equipment blockage caused by sodium sulphate deposition, and proposes the necessary subsequent research, which is of great significance for solving the disadvantageous effect of sodium sulfate deposition on the long-term stable operation of SCWG commercial plants.  相似文献   

20.
超临界水中生物质气化制氢技术因其具有良好的环保性、产氢高等特点已成为氢能领域的研究热点之一。文中对超临界水中生物质气化制氢反应路径的研究结果进行了总结,归纳了生物质及其模型化合物葡萄糖在亚临界和超临界水中分解气化的可能的反应路径以及反应过程中产生的一系列中间产物,讨论了影响反应的主要因素。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号