首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The aim of this research is to study the role of concentration variations on precursor solution of nitrogen doped ZnO (ZnO:N) thin films which has been prepared by spray pyrolysis technique. SEM micrographs show that ZnO:N films in 0.1 ML concentration have a mono-disperse surface with nano-spheres of 50 nm in diameter. In higher molarities the nano-spheres agglomerate leading to particle formation. For 0.4 ML concentrations this change is observed, where plume like particles are seen over the surface of ZnO:N thin film. This change corresponds also to changes observed in the XRD spectra, where crystal orientation of ZnO:N thin films changes from (002) to (100). All of the ZnO:N thin films have kept their sharp ultra violet absorption edge, but the transparency in visible spectra region decreases as the molarities in precursor solution increase. Photoluminescence spectra at room temperature revealed emissions at 2.33 eV, 2.54 eV and 3.16 eV that can be attributed to the presence of nitrogen in ZnO structure. We also observe that all samples analyzed show a p-type Hall effect behavior, and that as the molarities in the precursor solution increase, the electrical resistivity of the films decreases, due to an enhancement of free carriers, while the mobility decreases. These data prove the capability of spray pyrolysis as a viable technique in preparing p-type TCO materials and so, fully transparent CMOS-like devices.  相似文献   

2.
《Thin solid films》1999,337(1-2):176-179
The effect of doping and annealing atmosphere on the performances of zinc oxide thin films prepared by spray pyrolysis have been studied. The results show that the way doping influences the electrical and structural properties depends also on the characteristics of the doping element. Annealing the as-deposited films in an inert atmosphere leads to a substantial reduction in the resistivity of the films deposited and to an increase on the degree of film’s crystallinity.  相似文献   

3.
Zinc oxide films have been prepared via spray pyrolysis using a perfume atomizer. ZnCl2 has been used as precursor. The influence of the precursor solution and dopant concentration has been investigated. Homogeneous films are obtained with a precursor concentration ranging between 0.3 and 0.4 M and a SnCl2 dopant concentration of 1–2%. The films exhibit broad band gaps and small conductivity. The microstructural properties of these films have been compared with that of films deposited using a classical nozzle. Films deposited by perfume atomizer are rougher, with smaller grain size, compared to films deposited with a classical nozzle.  相似文献   

4.
Undoped and In-doped ZnO thin films have been prepared on glass substrates from solutions of Zn(CH3CO2)22H2O in a mixture of deionized water and isopropyl alcohol by spray pyrolysis. Their optical, morphological and structural qualities have been studied and the effect of the preparation conditions discussed. It was shown that the main factors determining the parameters of ZnO films are the growth temperature and the indium concentration. The growth temperatures of 625–675 K, indium doping levels of 1–1.5 at.% and precursor concentrations of 0.1–0.2 mol 1−1 are preferable to achieve ZnO films with optical and structural qualities as required for solar cell applications.  相似文献   

5.
Undoped Zinc oxide (ZnO) and Bismuth doped zinc oxide (ZBO) thin films have been prepared by a simple and inexpensive technique namely ultrasonic spray pyrolysis. Films were prepared from an aqueous solution of zinc acetate on glass and silicon substrates at temperature of 350 °C. Doping is achieved by adding a small amount of Bi(NO3), H2O salt to the starting solution which is mixed thoroughly prior to spraying. The goal of this work is to study the influence of doping (Bi) with different concentrations on the structural, optical, and electrical properties of Bi doped ZnO films. Structural analysis shows that the ZBO layers are polycrystalline with a wurtzite structure and (100) preferential orientation which disappears gradually with increasing doping concentration. The optical transmittance average of all films, regardless the doping concentration, was higher than 80% in the visible range. The obtained films gaps values vary in the range from 3.19 to 3.24 eV and the Urbach energy lies in the range 11 to 530 meV. The measured conductivity, in dark and at room temperature, varies with four order of decade level (from 10?3 to 10+1 (??cm)?1)with increasing Bi doping level.  相似文献   

6.
In this work, conductive C12A7 thin films were deposited by spray pyrolysis method onto glass substrates. The films, structural, optical and electrical properties were investigated as a function of the spray number. X-rays diffraction showed that the deposited films were polycrystalline with a preferential orientation along the (310) planes. Raman spectroscopy confirmed the C12A7 phase and revealed the superoxide radical \( {\text{O}}_{2}^{ - } \) presence. The C12A7 films, optical transmission varied between 57 and 75 % as a function of the spray number. A constant band energy (4.14 eV), determined from UV–visible spectra, was attributed to the electrons transition from the valence band to the occupied cage level. According to the photoluminescence (PL) spectroscopy, two main emission peaks at 1.55 and 2.81 eV were respectively attributed to the formation of the “F+-like centers” and the electron transitions from the occupied cage level to the framework conduction band. Another emission peak at about 2.27 eV was attributed to the cages oxygen vacancies defects. The electrical resistivity variation between 10?4 and 1.36 Ω cm was correlated to the in cages oxygen vacancies produced during films deposition.  相似文献   

7.
This study investigates the effect of different growth parameters on the structural and optical properties of ZnS thin films, prepared using spray pyrolysis. The films were prepared using different Zn:S ratios (between 1:1 and 1:6) and in different growth solutions: (A), zinc chloride and thiourea and (B) dehydrated zinc acetate and thiourea, both in distilled water.By varying the Zn:S ratio in the films, the optical properties (absorption and photoluminescence) show that different species are created during film growth. This was deduced from the wide emission band appearing in the green region of the photoluminescence spectra, and from the change in band gap, which varies between 3.2 and 3.5 eV. Films formed from solution (A) with a Zn:S ratio of 1:3 or 1:4 show the best morphology and transmission. ZnS has a wider band gap than other conventional II-VI semiconductors utilized in various electronic and optical devices and can be expected to provide a useful window layer of solar cells which leads to an improvement in overall efficiency by decreasing absorption loss.  相似文献   

8.
A large number of thin films of cadmium oxide have been prepared on glass substrates by spray pyrolysis method. The prepared films have uniform thickness varying from 200–600 nm and good adherence to the glass substrate. A systematic study has been made on the influence of thickness on resistivity, sheet resistance, carrier concentration and mobility of the films. The resistivity, sheet resistance, carrier concentration and mobility values varied from 1·56–5·72×10−3 Ω-cm, 128–189 Ω/□, 1·6–3·9×1021 cm−3 and 0·3–3 cm2/Vs, respectively for varying film thicknesses. A systematic increase in mobility with grain size clearly indicates the reduction of overall scattering of charge carriers at the grain boundaries. The large concentration of charge carriers and low mobility values have been attributed to the presence of Cd as an impurity in CdO microcrystallites. Using the optical transmission data, the band gap was estimated and found to vary from 2·20–2·42 eV. These films have transmittance around 77% and average reflectance is below 2·6% in the spectral range 350–850 nm. The films aren-type and polycrystalline in nature. SEM micrographs of the CdO films were taken and the films exhibit clear grains and grain boundary formation at a substrate temperature as low as 523 K.  相似文献   

9.
Herein, we report on tin monosulfide (SnS) thin films elaborated by the Chemical Spray Pyrolysis (CSP) technique onto various substrates as simple glass, ITO-, and Mo-coated glasses in order to study the influence of substrates on the physical and chemical properties of Sns thin films. Structural analysis revealed that all films crystallize in orthorhombic structure with (111) as the sole preferential direction without secondary phases. In addition, film prepared onto pure glass exhibits a better crystallization compared to films deposited onto coated glass substrates. Raman spectroscopy analysis confirms the results obtained by X-ray diffraction with modes corresponding well to SnS single-crystal orthorhombic ones (47, 65, 94, 160, 186, and 219 cm ?1) without any additional parasite secondary phase like Sn2S3 or SnS2. Field emission scanning electron microscope revealed that all films have a cornflake-like particles surface morphology, and energy dispersive X-ray spectroscopy analysis showed the presence of sulfur and tin with a nearly stoichiometric ratio in films deposited onto pure glass. High surface roughness and large grains are observable in film deposited onto glass. From optical spectroscopy, it is inferred that band gap energy of SnS/glass and SnS/ITO were 1.64 and 1.82 eV, respectively.  相似文献   

10.
The dependence of the stoichiometry and the superconducting characteristics of YBaCuO films deposited by spray pyrolysis on the spraying solution composition and the deposition conditions is reported. It has been found that a proper optimization of the starting materials concentration in the spraying solution results in superconducting films with zero resistance temperature of 91 K and a transition to superconducting state within a 3 K range. X-ray diffraction and resistance vs temperature measurements have been used to monitor the crystal composition and the conductive characteristics of the films as a function of the spraying solution composition and the deposition parameters.  相似文献   

11.
Polycrystalline lead iodide (PbI2) thin films have been deposited by spray pyrolysis method using N,N-dimethylformamide (DMF) as solvent as a function of several deposition parameters. DMF is used as an alternative to water due to the larger solubility limit of PbI2 in this solvent. In this work, the solution rate during the deposition time of 3 h was varied in the range of 0.11 cm3/min up to 0.30 cm3/min. A growth rate varying from 19 Å s?1 up to 47 Å s?1 was obtained as a function of solution rate. Dark current as a function of temperature for the final films reveals that for larger solution rates smaller values of electrical resistivity is obtained. For a solution rate of 0.30 cm3/min, an electrical transport activation energy (E a) of about 0.65 eV was measured for the whole temperature range. On the other hand, for the sample deposited with a solution rate of 0.11 cm3/min, two main transport mechanisms can be observed with an activation energy of about 1.23 eV for temperatures above 50 °C. The effect of substrate temperature is also discussed. Samples were deposited in the temperature range of 170 °C up to 250 °C with a fixed solution rate of 0.16 cm3/min. In addition, the films were exposed to X-ray irradiation in the mammography diagnosis region, using a molybdenum (Mo) anode and a peak tube potential between 26 and 36 kV (equivalent photon energies between 10 keV and 15 keV).  相似文献   

12.
The electrochromic (EC) properties of tungsten oxide (WO3), such as coloration efficiency, cyclic durability and reversibility strongly depend on the structural and morphological properties, which are influenced by the deposition method and parameters.This paper presents the steps for optimizing the deposition parameters (substrate temperature, air flow pressure and precursor solution molarity) for improving the optical and electrical properties of WO3 thin films for EC applications. WO3 thin films were deposited by spray pyrolysis using tungsten hexachloride (WCl6) dissolved in ethanol as precursor solution. The EC properties of optimized films were tested in two different electrolytes (H2SO4 1 M and acetic acid/sodium acetate buffer with pH = 4) and changes in structure, composition and morphology of the films after coloration/bleaching cycles were discussed.The deposition temperature, carrier gas pressure and solution molarity were optimized at 250 °C, 120 kPa and 0.14 M respectively. Under these condition a dense, uniform film, with homogenous distribution of particles, good adhesion to the substrate, low roughness (9.02 nm), high transparency (> 70% in the 500-1100 nm range) and conductivity was obtained. Transmission modulation is higher for the sample cycled in H2SO4 1 M (64% at 630 nm) compared to that cycled in the buffer (21% at 630 nm), whereas opposite results were obtained for coloration efficiencies 28 cm2 C− 1 (at 630 nm) and 35 cm2 C− 1 (at 630 nm), respectively. Changes in surface chemistry and morphology of the optimized sample were observed after cycling in H2SO4.  相似文献   

13.
CuInSe2 (CIS) thin films were grown by selenization of electro-deposited or electroless-deposited Cu–In precursors. Cu–In precursors were formed by layer-by-layer electro-deposition of Cu and In as well as by electroless co-deposition of Cu and In. The major phases in the precursors were found to be Cu11In9 and elemental In. It was found that the stoichiometric CIS phase (CuInSe2) may be formed by selenization of the precursors at temperatures higher than 500°C. The Cu–In precursors as well as CIS films were characterized by X-ray diffraction and scanning electron microscopy. The cubic CIS phase was formed when electroless-deposited Cu–In precursor was selenized, whereas the chalcopyrite CIS or the In-rich phase (CuIn2Se3.5) was formed when the layered precursors were selenized at a high temperature.  相似文献   

14.
15.
《Vacuum》1999,52(1-2):45-49
Undoped and doped (indium and aluminium) zinc oxide (ZnO) thin films have been prepared by spray pyrolysis, and the effect of the doping and annealing atmosphere on the electrical, optical and structural properties of the produced films has been investigated. The deposited films have a high resistivity. Annealing the films in an argon atmosphere or under vacuum leads to a substantial reduction of the electrical resistivity of the films and to an increase on the degree of cristallinity of the deposited material. The most pronounced changes were observed in the films annealed in Argon. The results also indicate that doping highly influences the electrical and structural properties of the films, which is more pronounced in the films doped with Indium.  相似文献   

16.
The preparative parameters have been optimized for NiO film formation in fabricated Spray Pyrolysis System using pneumatic air pressure driven aerosol formation. The structural studies by X-ray diffractometer (XRD) have been carried out to investigate crystallographic features. It was revealed that NiO crystallizes in cubic bunsenite structure. The optical band gap for direct transitions was found to be equal to 3.67 eV. Field Emission Scanning Electron Micrographs (FESEM) have been employed to study morphological aspects of the prepared films. The elemental depth profiles of film contents have been obtained Auger Electron Spectroscopic (AES) studies.  相似文献   

17.
18.
Semiconducting thin films of CuInSe2 have been grown by thermal annealing in air of evaporated layers of Cu, In and Se on glass substrates. The structure of the films has been studied using the X-ray diffraction (XRD). The films were polycrystalline and showed mixture phases (binary and ternary) depending on the annealing temperature. The electrical properties revealed resistivity range of 101–104Ωcm, respectively. The resistivity influenced with the annealing temperature and decreased with increasing temperature. The films have been analyzed for optical band gap.  相似文献   

19.
InP thin films were prepared by spray pyrolysis technique using aqueous solutions of InCl3 and Na2HPO4, which were atomized with compressed air as carrier gas. The InP thin films were obtained on glass substrates. Thin layers of InP have been grown at various substrate temperatures in the range of 450–525°C. The structural properties have been determined by using X-ray diffraction (XRD). The changes observed in the structural phases during the film formation in dependence of growth temperatures are reported and discussed. Optical properties, such as transmission and the band gap have been analyzed. An analysis of the deduced spectral absorption of the deposited films revealed an optical direct band gap energy of 1.34–1.52 eV for InP thin films. The InP films produced at a substrate temperature 500°C showed a low electrical resistivity of 8.12 × 103 Ω cm, a carrier concentration of 11.2 × 1021 cm−3, and a carrier mobility of 51.55 cm2/Vs at room temperature.  相似文献   

20.
Indium doped tin oxide (SnO2:In) thin films were deposited on glass substrates by sol–gel dip coating technique. X-ray diffraction pattern of SnO2:In thin films annealed at 500 °C showed tetragonal phase with preferred orientation in T (110) plane. The grain size of tin oxide (SnO2) in SnO2:In thin films are found to be 6 nm which makes them suitable for gas sensing applications. AFM studies showed an inhibition of grain growth with increase in indium concentration. The rms roughness value of SnO2:In thin films are found to 1 % of film thickness which makes them suitable for optoelectronic applications. The film surface revealed a kurtosis values below 3 indicating relatively flat surface which make them favorable for the production of high-quality transparent conducting electrodes for organic light-emitting diodes and flexible displays. X-ray photoelectron spectroscopy gives Sn 3d, In 3d and O 1s spectra on SnO2:In thin film which revealed the presence of oxygen vacancies in the SnO2:In thin film. These SnO2:In films acquire n-type conductivity for 0–3 mol% indium doping concentration and p type for 5 and 7 mol% indium doping concentration in SnO2 films. An average transmittance of >80 % (in ultra-violet–Vis region) was observed for all the SnO2:In films he In doped SnO2 thin films demonstrated the tailoring of band gap values. Photoluminescence spectra of the films exhibited an increase in the emission intensity with increase in indium doping concentration which may be due structural defects or luminescent centers, such as nanocrystals and defects in the SnO2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号