首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this research is to analyze the techno‐economic performance of hybrid renewable energy system (HRES) using batteries, pumped hydro‐based, and hydrogen‐based storage units at Sharurah, Saudi Arabia. The simulations and optimization process are carried out for nine HRES scenarios to determine the optimum sizes of components for each scenario. The optimal sizing of components for each HRES scenario is determined based on the net present cost (NPC) optimization criterion. All of the nine optimized HRES scenarios are then evaluated based on NPC, levelized cost of energy, payback period, CO2 emissions, excess electricity, and renewable energy fraction. The simulation results show that the photovoltaic (PV)‐diesel‐battery scenario is economically the most viable system with the NPC of US$2.70 million and levelized cost of energy of US$0.178/kWh. Conversely, PV‐diesel‐fuel cell system is proved to be economically the least feasible system. Moreover, the wind‐diesel‐fuel cell is the most economical scenario in the hydrogen‐based storage category. PV‐wind‐diesel‐pumped hydro scenario has the highest renewable energy fraction of 89.8%. PV‐wind‐diesel‐pumped hydro scenario is the most environment‐friendly system, with an 89% reduction in CO2 emissions compared with the base‐case diesel only scenario. Overall, the systems with battery and pumped hydro storage options have shown better techno‐economic performance compared with the systems with hydrogen‐based storage.  相似文献   

2.
In this study, the hydrogen production potential and costs by using wind/electrolysis system in P?narba??-Kayseri were considered. In order to evaluate costs and quantities of produced hydrogen, for three different hub heights (50 m, 80 m and 100 m) and two different electrolyzer cases, such as one electrolyzer with rated power of 120 kW (Case-I) and three electrolyzers with rated power of 40 kW (Case-II) were investigated. Levelised cost of electricity method was used in order to determine the cost analysis of wind energy and hydrogen production. The results of calculations brought out that the electricity costs of the wind turbines and hydrogen production costs of the electrolyzers are decreased with the increase of turbine hub height. The maximum hydrogen production quantity was obtained 14192 kgH2/year and minimum hydrogen cost was obtained 8.5 $/kgH2 at 100 m hub height in the Case-II.  相似文献   

3.
Wind energy systems have been considered for Canada's remote communities in order to reduce their costs and dependence on diesel fuel to generate electricity. Given the high capital costs, low-penetration wind–diesel systems have been typically found not to be economic. High-penetration wind–diesel systems have the benefit of increased economies of scale, and displacing significant amounts of diesel fuel, but have the disadvantage of not being able to capture all of the electricity that is generated when the wind turbines operate at rated capacity.Two representative models of typical remote Canadian communities were created using HOMER, an NREL micro-power simulator to model how a generic energy storage system could help improve the economics of a high-penetration wind–diesel system. Key variables that affect the optimum system are average annual wind speed, cost of diesel fuel, installed cost of storage and a storage systems overall efficiency. At an avoided cost of diesel fuel of 0.30 $Cdn/kWh and current installed costs, wind generators are suitable in remote Canadian communities only when an average annual wind speed of at least 6.0 m/s is present. Wind energy storage systems become viable to consider when average annual wind speeds approach 7.0 m/s, if the installed cost of the storage system is less than 1000 $Cdn/kW and it is capable of achieving at least a 75% overall energy conversion efficiency. In such cases, energy storage system can enable an additional 50% of electricity from wind turbines to be delivered.  相似文献   

4.
The energy efficiency of the hydrogen liquefaction process is studied, and a general model of the hydrogen liquefaction process is built for analyzing the energy efficiency and the influence of multiple parameters. Energy and exergy analysis models of the typical single-pass cycle and multiple-pass cycle are developed. The specific relationships among the parameters and energy efficiency of the total liquefaction system are deduced. A hydrogen liquefaction process with precooling nitrogen and cryogenic helium cycles is studied. For the precooling and cryogenic cycles, the SEC and net power consumption of the cryogenic helium cycle have different variation trends along with the precooling temperature and hydrogen liquefaction ratio. Their optimal values are identified to be ?194 °C and 0.9453, and the corresponding SEC, exergy efficiency, total capital expense, and total annual cost are 3.619 kWh/kgLH2, 33.44%, 82.58%, 8.263 M$, and 531.62 M$/yr, respectively. The proposed model can be used in the design and operation stages to analyze the variation of energy efficiency along with multiple parameters of the hydrogen liquefaction process.  相似文献   

5.
In this paper, a dynamic multiobjective particle swarm optimization (DMOPSO) method is presented for the optimal design of hybrid renewable energy systems (HRESs). The main goal of the design is to minimize simultaneously the total net present cost (NPC) of the system, unmet load, and fuel emission. A DMOPSO‐simulation based approach has been used to approximate a worthy Pareto front (PF) to help decision makers in selecting an optimal configuration for an HRES. The proposed method is examined for a case study including wind turbines, photovoltaic (PV) panels, diesel generators, batteries, fuel cells, electrolyzer, and hydrogen tanks. Well‐known metrics are used to evaluate the generated PF. The average spacing and diversification metrics obtained by the proposed approach are 1386 and 4656, respectively. Additionally, the set coverage metric value shows that at least 67% of Pareto solutions obtained by DMOPSO dominate the solutions resulted by other reported algorithms. By using a sensitivity analysis for the case study, it is found that if the PV panel and wind turbine capital cost are decreased by 50%, the total NPC of the system would be decreased by 18.8 and 3.7%, respectively. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
This paper presents a simulation model for an energy hub consisting of natural gas (NG) turbines as the main sources of energy (including both electricity and heat) and two renewable energy sources—wind turbines (WTs) and photovoltaic (PV) solar cells. The hub also includes water electrolyzers for hydrogen production. The hydrogen serves as an energy storage medium that can be used in some transportation applications, or it can be mixed with the NG feed stream to improve the emission profile of the gas‐turbine unit. The capacity of the designed hub is meant to simulate and replace the coal‐fired Nanticoke Generating Station with a NG‐fired power plant. Therefore, the aim of this work is to develop a simulated model that combines different energy generation technologies, which are evaluated in terms of the total energy produced, the cost per kWh of energy generated, and the amount of emissions produced. The proposed model investigates the benefits, both economic and environmental, the technological barriers, and the challenges of energy hubs by developing several scenarios. The simulation of these scenarios was done using General Algebraic Modeling System (GAMS®). Although the software is strongly known for its optimization capability, the mixed complementary problems solver makes it a strong tool for solving equilibrium problems. Excess energy produced during off‐peak demand by WTs and PV solar cells was used to feed the electrolyzer to produce H2 and O2. The proposed approach shows that a significant reduction in energy cost and greenhouse gas emissions were achieved, in addition to the increased overall efficiency of the energy hub. Out of the examined three scenarios, Scenario C appeared to be the most feasible option for a combination of renewable and non‐renewable technologies as it did not only produce hydrogen, but also provided electricity at relatively lower prices. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

7.
Most inhabitants of rural communities in Africa lack access to clean and reliable electricity. This has deprived the rural dwellers access to modern healthcare delivery. In this paper, an off-grid renewable energy system consisting of solar PV and wind turbine with hydrogen storage scheme has been explored to meet the electrical energy demands of a health clinic. The health clinic proposed is a group II with 10 beds located in a typical village in South Africa. First, the wind and solar energy resources of the village were analysed. Thereafter, the microgrid architecture that would meet the energy demand of the clinic (18.67 kWh/day) was determined. Some of the key results reveal that the average annual wind speed at 60 m anemometer height and solar irradiation of the village are 7.9 m/s and 4.779 kWh/m2/day, respectively. The required architecture for the clinic composes of 40 kW solar PV system, 3 numbers of 10 kW wind turbines, 8.6 kW fuel cell, 25 kW electrolyser and 40 kg hydrogen tank capacity. The capital cost of the microgrid was found to be $177,600 with a net present cost of $206,323. The levelised cost of energy of the system was determined to be 2.34 $/kWh. The project has a breakeven grid extension distance of 8.81 km. Since this distance is less than the nearest grid extension distance of 21.35 km, it is established that the proposed renewable energy microgrid with a hydrogen storage system is a viable option for the rural community health clinic.  相似文献   

8.
This study investigates the challenges and opportunities facing the installation of a hybrid hydrogen-renewable energy system in a remote island area disconnected from any main power grid. Islands with strong wind energy potential have the potential to become self-sufficient energy generating hubs that may even export electricity or hydrogen. This study has tested whether the combination of wind and hydrogen can replace a diesel generator on one of the Faroe Islands, Mykines. The comparison is based on an evaluation of each power system's costs, efficiency, environmental impact and suitability for the Mykines. The findings from this research can help inform those seeking to design 100% renewable energy systems for remote areas, and in particular islands. Furthermore, our comparison has value for those seeking to optimize the integration of wind turbines with hydrogen energy systems.  相似文献   

9.
Brian Fleck  Marc Huot   《Renewable Energy》2009,34(12):2688-2696
As the popularity of renewable energy systems grows, small wind turbines are becoming a common choice for off-grid household power. However, the true benefits of such systems over the traditional internal combustion systems are unclear. This study employs a life-cycle assessment methodology in order to directly compare the environmental impacts, net-energy inputs, and life-cycle cost of two systems: a stand-alone small wind turbine system and a single-home diesel generator system. The primary focus for the investigation is the emission of greenhouse gases (GHG) including CO2, CH4, and N2O. These emissions are calculated over the life-cycle of the two systems which provide the same amount of energy to a small off-grid home over a twenty-year period. The results show a considerable environmental benefit for small-scale wind power. The wind generator system offered a 93% reduction of GHG emissions when compared to the diesel system. Furthermore, the diesel generator net-energy input was over 200 MW, while the wind system produced an electrical energy output greater than its net-energy input. Economically, the conclusions were less clear. The assumption was made that diesel fuel cost over the next twenty years was based on May 2008 prices, increasing only in proportion to inflation. As such, the net-present cost of the wind turbine system was 14% greater than the diesel system. However, a larger model wind turbine would likely benefit from the effects of the ‘economy of scale,’ producing superior results both economically and environmentally.  相似文献   

10.
In electricity systems mainly supplied with variable renewable electricity (VRE), the variable generation must be balanced. Hydrogen as an energy carrier, combined with storage, has the ability to shift electricity generation in time and thereby support the electricity system. The aim of this work is to analyze the competitiveness of hydrogen-fueled gas turbines, including both open and combined cycles, with flexible fuel mixing of hydrogen and biomethane in zero-carbon emissions electricity systems. The work applies a techno-economic optimization model to future European electricity systems with high shares of VRE.The results show that the most competitive gas turbine option is a combined cycle configuration that is capable of handling up to 100% hydrogen, fed with various mixtures of hydrogen and biomethane. The results also indicate that the endogenously calculated hydrogen cost rarely exceeds 5 €/kgH2 when used in gas turbines, and that a hydrogen cost of 3–4 €/kgH2 is, for most of the scenarios investigated, competitive. Furthermore, the results show that hydrogen gas turbines are more competitive in wind-based energy systems, as compared to solar-based systems, in that the fluctuations of the electricity generation in the former are fewer, more irregular and of longer duration. Thus, it is the characteristics of an energy system, and not necessarily the cost of hydrogen, that determine the competitiveness of hydrogen gas turbines.  相似文献   

11.
Three renewable energy technologies (RETs) were analyzed for their feasibility for a small off-grid research facility dependent on diesel for power and propane for heat. Presently, the electrical load for this facility is 115 kW but a demand side management (DSM) energy audit revealed that 15–20% reduction was possible. Downsizing RETs and diesel engines by 15 kW to 100 kW reduces capital costs by $27 000 for biomass, $49 500 for wind and $136 500 for solar.The RET Screen International 4.0® model compared the economical and environmental costs of generating 100 kW of electricity for three RETs compared to the current diesel engine (0 cost) and a replacement ($160/kW) diesel equipment. At all costs from $0.80 to $2.00/l, biomass combined heat and power (CHP) was the most competitive. At $0.80 per liter, biomass’ payback period was 4.1 years with a capital cost of $1800/kW compared to wind's 6.1 years due to its higher initial cost of $3300/kW and solar's 13.5 years due to its high initial cost of $9100/kW. A biomass system would reduce annual energy costs by $63 729 per year, and mitigate GHG emissions by over 98% to 10 t CO2 from 507 t CO2. Diesel price increases to $1.20 or $2.00/l will decrease the payback period in years dramatically to 1.8 and 0.9 for CHP, 3.6 and 1.8 for wind, and 6.7 and 3.2 years for solar, respectively.  相似文献   

12.
Studies about investigation of hydrogen production from wind energy and hydrogen production costs for a specific region were reviewed in this study and it was shown that these studies were rare in the world, especially in Turkey. Therefore, the costs of hydrogen, hydrogen production quantities using a wind energy conversion system were considered as a case study for 5 different locations of Nigde, Kirsehir, Develi, Sinop and Pinarbasi located in the Central Anatolia in Turkey. Annual wind energy productions and costs for different wind energy conversion systems were calculated for 50 m, 80 m and 100 m hub heights. According to wind energy costs calculations, the amounts and costs of hydrogen production were computed. Furthermore, three different scenarios were taken into account to produce much hydrogen. The results showed that the hydrogen production using a wind energy conversion system with 1300 kW rated power had a range from 1665.24 kgH2/year in Nigde at 50 m hub height to 6288.59 kgH2/year in Pinarbasi at 100 m hub height. Consequently, Pinarbasi and Sinop have remarkable wind potential and potential of hydrogen production using a wind–electrolyzer energy system.  相似文献   

13.
Electrification to rural and remote areas with limited or no access to grid connection is one of the most challenging issues in developing countries like Colombia. Due to the recent concerns about the global climatic change and diminishing fuel prices, searching for reliable, environmental friendly and renewable energy sources to satisfy the rising electrical energy demand has become vital. This study aims at analyzing the application of photovoltaic (PV) panels, wind turbines and diesel generators in a stand-alone hybrid power generation system for rural electrification in three off-grid villages in Colombia with different climatic characteristics. The areas have been selected according to the “Colombia’s development plan 2011–2030 for non-conventional sources of energy”. First, different combinations of wind turbine, PV, and diesel generator are modeled and optimized to determine the most energy-efficient and cost-effective configuration for each location. HOMER software has been used to perform a techno-economic feasibility of the proposed hybrid systems, taking into account net present cost, initial capital cost, and cost of energy as economic indicators.  相似文献   

14.
The transition from fossil fuels to renewable energy sources is critical to reduce future emissions and mitigate the consequences hereof. Yet, the expansion of renewable energy, especially the highly fluctuating production of wind energy, poses economic challenges to the existing energy system in Denmark. This paper investigates the economic feasibility of integrating a 250 kW, 500 kW, 750 kW and 1 MW water electrolysis system in the existing Danish energy market to exploit excessive off- and onshore wind energy for hydrogen production used as fuel for transportation purposes. In 2018, Danish wind turbines produced excess energy during 1238 h, which poses a capacity constraint as the electrolysis systems are limited to only produce hydrogen for 14% of the total available annual hours. This paper concludes that the net present value of each investment is negative as the fixed and variable production costs exceeds the generated revenues and it is therefore not economical feasible to invest in an electrolysis system with the purpose of only operating whenever excess off- and onshore wind energy is available.  相似文献   

15.
For the development of the energy infrastructure of remote isolated consumers, an expedient solution is the creation of a modular hybrid energy system based on renewable energy sources, which will save tens of billions of rubles a year by saving expensive diesel fuel. Taking into account the high wind energy resource in these territories, the use of wind power plants as part of that system is justified. The article discusses the methodology for substantiating the parameters and modes of operation of an autonomous wind-diesel power complex based on the territorial-power classification of power supply systems and a 4-level methodology for optimizing parameters, an example of upgrading an existing diesel power plant in the Arkhangelsk region is given. The existing diesel units with a capacity of 1300 kW were replaced by a modular wind-diesel power system with a high renewable penetration level (58%) with four wind turbines with a capacity of 200 kW and a storage system with a capacity of 65 kWh. This made it possible to achieve a diesel fuel replacement share of 232 000 L per year, which in monetary terms in 2021 prices is 25 million rubles per year. As a promising direction, a variant of the territorial development of the energy sector of the Leshukonsky district of the Arkhangelsk region based on wind energy with the possibility of producing up to 100 tons of “green” hydrogen annually is considered. Various options for reducing harmful emissions in the region were considered, the maximum use of local resources allows saving up to 22 000 tons of CO2e per year.  相似文献   

16.
Hydrogen is one of the energy carriers that can be produced using different techniques. Combining multiple energy sources can enhance hydrogen production and meet other electrical demands. The hybrid arrangement allows the produced hydrogen to be stored and used when the electrical energy sources are not adequate. In this study, utilizing the meteorological data was investigated using HOMER (Hybrid Optimization of Multiple Energy Resources) software for the optimal solution. The results demonstrated that the “best-optimized system has 270 kW of photovoltaic (PV), 1 unit of 300 kW of wind turbine (WT), 500 kW of electrolyzer, 100 kg/L of the hydrogen tank, 70 units of 1 kWh lithium-ion battery, and 472 kW of the converter. The selected hybrid energy system has the lowest Levelized cost of energy (LCOE), Levelized cost of hydrogen (LCOH), and net present cost (NPC) of $/kg 0.6208, $/kg 9.34, and $ 484,360.00 respectively which judged the system to be the best choice for the proposed hydrogen project in AI-Kharj. This investigation will help stakeholders and policymakers optimize hybrid energy systems that economically meet the hydrogen production and refueling station demands of the AI-Kharj community.  相似文献   

17.
This paper presents a fuzzy set based modeling of wind power generation. The wind power generation has been solved by the proposed fuzzy generation for an island in Taiwan. The cost effectiveness of wind power generation is then evaluated by calculating the avoided generation cost of diesel generators. The load survey study has been performed to find the typical daily load patterns of various customer classes. With the typical load patterns and total energy consumption by each customer class, the load composition and daily power profile of the isolated power system are therefore derived. The wind power generation of eight wind turbines and the corresponding avoided generation cost is estimated by the fuzzy generation model according to the hourly wind speed. The power generation and the corresponding cost of diesel generators required to meet the system power demand with wind power generation have therefore been obtained. It is found that the wind power generation can economically and effectively substitute the generation cost of the diesel power plant and provide the partial power supply capability for the net peak load demand.  相似文献   

18.
Wind resource assessment of the Jordanian southern region   总被引:1,自引:0,他引:1  
Eyad S. Hrayshat   《Renewable Energy》2007,32(11):1948-1960
Wind data in terms of annual, seasonal and diurnal variations at Queira, which is located in the southern part of Jordan was studied and analyzed. For this purpose, long-term wind speed data for a period of 12 years (1990–2001) was used. The analysis showed that the seasonal and diurnal pattern of wind speed matches the electricity load pattern of the location. Higher winds of the order of 6 m/s and more were observed during both the summer months of the year (May–August) and peak hours (1100–1500) of the day. The wind duration availability is discussed as the number of hours during which the wind remained in certain wind speed intervals. The possibility of electricity generation from wind power at Queira was carried out using three different wind energy systems of sizes 100, 22 kW rated power, and a wind farm consisting of 25 small wind turbines; each of 4 kW rated power with hub heights of 20, 30, and 40 m. The energy production analysis showed higher production from the wind farm with a 20 m hub height than the production from the other two wind turbines. Similarly, the cost analysis showed that the lowest generation costs of 1 kWh were obtained for the wind farm compared to the other two wind turbines. The possibility of water pumping using the wind farm was also investigated. The results showed that water pumping using wind turbines is an appropriate alternative for the photovoltaic water pumping in the region.  相似文献   

19.
Clean energy resources will be used more for sustainability improvement and durable development. Efficient technologies of energy production, storage, and usage results in reduction of gas emissions and improvement of the world economy. Despite 30% of electricity being produced from wind energy, the connection of wind farms to medium and large-scale grid power systems is still leading to instability and intermittency problems. Therefore, the conversion of electrical energy generated from wind parks into green hydrogen consists of an exciting solution for advancing the development of green hydrogen production, and the clean transportation sector. This paper presents a techno-economic optimization of hydrogen production for refueling fuel cell vehicles, using wind energy resources. The paper analyses three configurations, standalone Wind-Park Hydrogen Refueling Station (WP-HRS) with backup batteries, WP-HRS with backup fuel cells, and grid-connected WP-HRS. The analysis of different configurations is based on the wind potential at the site, costs of different equipment, and hydrogen load. Therefore, the study aims to find the optimized capacity of wind turbines, electrolyzers, power converters, and storage tanks. The optimization results show that the WP-HRS connected to the grid has the lowest Present Worth Cost (PWC) of 6,500,000 €. Moreover, the Levelized Hydrogen Cost (LHC) of this solution was found to be 6.24 €/kg. This renewable energy system produces 80,000 kg of green hydrogen yearly.  相似文献   

20.
This paper performs a thermo-economic assessment of a multi-generation system based on solar and wind renewable energy sources. This system works to generate power, freshwater, and hydrogen, which consists of the following parts: the solar collectors, Steam Rankine subsystem, Organic Rankine subsystem, desalination part, and hydrogen production and compression unit. Initially, the effects of variables including reference temperature, solar radiation intensity, wind speed, and solar cycle mass flow rate, which depend on weather conditions and affect the performance of the integrated system, were investigated. The thermodynamic analysis results showed that the overall study's exergy efficiency, the rate of hydrogen and freshwater production, and total cost rate are 33.3%, 7.92 kg/h, 1.6398 kg/s, and 61.28 $/h, respectively. Also, the net power generation rate in the Steam and Organic Rankine subsystems and wind turbines are 315 kW, 326.52 kW, and 226 kW, respectively. The main goal of this study is to minimize the total cost rate of the system and maximize the exergy efficiency and hydrogen and freshwater production rate of the total system. The results of optimization showed that the exergy efficiency value improved by 20.7%, the hydrogen production rate increased by 1%, and the total cost rate value declined by 2%. Moreover, the optimum point is similar to a region in Hormozgan province, Iran. So, this region is proposed for building the power plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号