首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, it is aimed to meet the annual electricity and heating needs of a house without interruption with the photovoltaic panel, wind turbine, methanol electrolyzer, and high temperature proton exchange membrane fuel cell system. The system results show that the use of the 2 WT with 18 PV was enough to provide the need of the methanol electrolyzer, which provides requirements of the high temperature proton exchange membrane fuel cell. The produced heat by the fuel cell was used to meet the heat requirement of the house with combined heat and power system. Electrical, thermal and total efficiencies of fuel cell system with combined heat and power were obtained as 38.54%, 51.77% and 90%, respectively. Additionally, the levelized cost of energy of the system was calculated as 0.295 $/kWh with combined heat and power application. The results of this study show that H2 is useful for long-term energy storage in off-grid energy systems and that the proposed hybrid system may be the basis for future H2-based alternative energy applications.  相似文献   

2.
A techno-economic assessment of hydrogen production from waste heat using a proton exchange membrane (PEM) electrolyzer and solid oxide electrolyzer cell (SOEC) integrated separately with the Rankine cycle via two different hybrid systems is investigated. The two systems run via three available cement waste heats of temperatures 360 °C, 432 °C, and 780 °C with the same energy input. The waste heat is used to run the Rankine cycle for the power production required for the PEM electrolyzer system, while in the case of SOEC, a portion of waste heat energy is used to supply the electrolyzer with the necessary steam. Firstly, the best parameters; Rankine working fluid for the two systems and inlet water flow rate and bleeding ratio for the SOEC system are selected. Then, the performance of the two systems (Rankine efficiency, total system efficiency, hydrogen production rate, and economic and CO2 reduction) is investigated and compared. The results reveal that the two systems' performance is higher in the case of steam Rankine than organic, while a bleeding ratio of 1% is the best condition for the SOEC system. Rankine output power, total system efficiency, and hydrogen production rate rose with increasing waste heat temperature having the same energy. SOEC system produces higher hydrogen production and efficiency than the PEM system for all input waste heat conditions. SOEC can produce 36.9 kg/h of hydrogen with a total system efficiency of 23.8% at 780 °C compared with 27.4 kg/h and 14.45%, respectively, for the PEM system. The minimum hydrogen production cost of SOEC and PEM systems is 0.88 $/kg and 1.55 $/kg, respectively. The introduced systems reduce CO2 emissions annually by about 3077 tons.  相似文献   

3.
The present study focuses on the energy, exergy, exergo-economic, and exergo-environmental analyses of the solar-assisted multi-generation system. The multi-generation system consists of parabolic trough solar collector, regenerative power plant, double-effect absorption chiller system, proton exchange membrane electrolyzer, and multi-stage flash desalination plant. In the regenerative power plant, liquid petroleum gas (LPG) based boiler is implemented. The propane (C3H8) is used as the fuel in the boiler combustion chamber. The thermal and exergetic efficiencies of the power cycle are observed to be 41.08% and 23.26%, respectively. The electrical power of 1.384 MW is produced by the low-pressure turbine. Whereas, the thermal COP and exergetic COP are observed and maintained in the range of 1.28 to 0.22, respectively. The liquid hydrogen is produced by the PEM electrolyzer with the thermal and exergetic efficiencies of 60.83% and 64.65%, respectively. Furthermore, the exergo-economics and exergo-environmental analyses have also been conducted and all the parameters have been analyzed and concluded through graphs and tables.  相似文献   

4.
In this study, design and optimization of the hybrid renewable energy system consisting of Photovoltaic (PV)/Electrolyzer/Proton Exchange Membrane Fuel Cell (PEMFC) was investigated to provide electricity and heat for Greenhouse in ?anl?urfa (Turkey). The coupling of a photovoltaic system with PEMFC was preferred to supply continuous production of electric energy throughout the year. Additionally, produced heat from PEMFC was used to heating of the greenhouse by micro cogeneration application. The MATLAB/Simulink was applied to the design and optimization of the proposed hybrid system. In the designed system, solar energy was selected to produce the Hydrogen (H2) required to run the electrolyzer. In cases where the solar energy is not sufficient and cannot meet the electricity requirement for the electrolyzer; the H2 requirement for the operation of the PEMFC was met from the H2 storage tanks and energy continuity was ensured. The electrolyzer was designed for H2 demand of the 3 kW PEMFC which were met the greenhouse energy requirement. PEMFC based hybrid system has 48% electrical and 45% thermal efficiencies. According to optimization results obtained for the proposed hybrid system, the levelized cost of energy was found 0.117 $/kWh. The obtained results show the proposed PV/Electrolyzer/PEMFC hybrid power system provides an applicable option for powering stand-alone application in a self-sustainable expedient.  相似文献   

5.
In this article, a new stand‐alone Cu‐Cl cycle system (SACuCl) for trigeneration of electricity, hydrogen, and oxygen using a combination of a specific combined heat and power (CHP) unit and a 2‐step Cu‐Cl cycle using a CuCl/HCl electrolyzer is presented. Based on the self‐heat recuperation technology for the CHP unit and the heat integration of the Cu‐Cl cycle unit, the power efficiency of the SACuCl for 5 prescribed scenarios (case studies) is predicted to achieve about 48% at least. The SACuCl uses the technologies of the dry reforming of methane and the oxy‐fuel combustion to achieve a relatively high CO2 concentration in the flue gas, and CO2 emissions for power generation could be almost restricted by 0.418 kg/kWh. From the aspect of the electricity required for hydrogen production, it is verified that the 2‐step Cu‐Cl cycle system is superior to the conventional water electrolyzer because the CHP process supplies the heat/electricity for Cu‐Cl thermochemical reactions and a thermoelectric generator is connected to the exhaust gas for recovering the power consumption from the compressor and the CuCl/HCl electrolyzer. Finally, the heat exchanger network and the pinch technology are employed to determine the optimum heat recovery of the Cu‐Cl cycle. In case 5 analyzed for the SACuCl, the electricity required for the heat‐integrated 2‐step Cu‐Cl cycle is predicted to dramatically decrease from 4.39 to 0.452 kWh/m3 H2 and the cycle energy efficiency could be obviously increased from 23.77 to 31.97%.  相似文献   

6.
Alkaline water electrolysis is the most promising approach for the industrial production of green hydrogen. This study investigates the dynamic operational characteristics of an industrial-scale alkaline electrolyzer with a rated hydrogen production of 50 m3/h. Strategies for system control and equipment improvement in dynamic-mode alkaline electrolytic hydrogen production are discussed. The electrolyzer can operate over a 30%–100% rated power load, thereby facilitating high-purity (>99.5%) H2 production, competitive DC energy efficiency (4.01–4.51 kW h/Nm3 H2, i.e., 73.1%–65.0% LHV), and good gas–liquid fluid balance. A safe H2 content of 2% in O2 (50% LFL) can be guaranteed by adjusting the system pressure. In transient operation, the electrolyzer can realize minute-level power and pressure modulation with high accuracy. The results confirm that the proposed alkaline electrolyzer can absorb highly fluctuating energy output from renewables because of its capability to operate in a dynamic mode.  相似文献   

7.
A novel solid oxide fuel cell (SOFC)/gas turbine (GT) hybrid cycle system with CO2 capture is proposed based on a typical topping cycle SOFC/GT hybrid system. The H2 gas is separated from the outlet mixture gas of SOFC1 anode by employing the advanced ceramic proton membrane technology, and then, it is injected into SOFC2 to continue a new electrochemical reaction. The outlet gas of SOFC1 cathode and the exhaust gas from SOFC2 burn in the afterburner 1. The combustion gas production of the afterburner1 expands in the turbine 1. The outlet gas of SOFC1 anode employs the oxy‐fuel combustion mode in the afterburner 2 after H2 gas is separated. Then, the combustion gas production expands in the turbine 2. To ensure that the flue gas temperature does not exceed the maximum allowed turbine inlet temperature, steam is injected into the afterburner 2. The outlet gas of the afterburner 2 contains all the CO2 gas of the system. When the steam is removed by condensation, the CO2 gas can be captured. The steam generated by the waste heat boiler is used to drive a refrigerator and make CO2 gas liquefied at a lower temperature. The performance of the novel quasi‐zero CO2 emission SOFC/GT hybrid cycle system is analyzed with a case study. The effects of key parameters, such as CO2 liquefaction temperature, hydrogen separation rate, and the unit oxygen production energy consumption on the new system performance, are investigated. Compared with the other quasi‐zero CO2 emission power systems, the new system has the highest efficiency of around 64.13%. The research achievements will provide the valuable reference for further study of quasi‐zero CO2 emission power system with high efficiency. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
The paper deals with the problems of hydrogen combustion in an oxygen environment to produce high-temperature steam to be used in electricity generation at various power stations including nuclear power plants (NPP). For example, the use of H2/O2 steam generator within a hydrogen energy complex may allow increasing the NPP power and efficiency under operating conditions due to hydrogen steam superheating of the main working fluid in a steam-turbine unit. In addition, the use of the hydrogen energy complex may allow adapting NPP to variable electric load schedules with the increasing share of such power stations as well as developing environmentally friendly technologies for electricity generation. In the paper, a new solution to the problem of the effective and safe use of hydrogen energy at NPP with a hydrogen energy complex has been proposed.Technical solutions to hydrogen combustion in an oxygen environment using direct injection of cooling water or water steam into combustion products may have a significant weakness, namely the “quenching” phenomenon occurring during water/water steam injection resulting in the recombination efficiency decrease during the cooling of combustion products which is reflected in the increased proportion of non-condensable gases. In this case, the supply of such mixture to the steam-power cycle may be unsafe, as it could result in the increased concentration of unburned hydrogen in the steam turbine flow path. In the paper, a closed hydrogen cycle along with the hydrogen steam superheating system on its basis has been proposed to solve this problem. The closed-circuit system of hydrogen combustion preventing hydrogen permeation into the working fluid of a steam cycle completely as well as ensuring its full oxidation due to some excess of circulating oxygen has been investigated by the authors.Two types of H2/O2 combustion chambers for the system of safe hydrogen steam superheating in NPP cycle by using the closed-circuit system of hydrogen combustion in an oxygen environment have been considered in the study. The required parameters of H2/O2 steam generator with regard to operating temperature conditions as well as the power range of H2/O2 steam generators with the proposed combustion chamber construction design have been determined by mathematical modeling of the combustion and heat-mass-exchange processes.  相似文献   

9.
Most waste solvent treatment methods involve combustion; however, such methods emit carbon dioxide and are also problematic relative to energy costs. As well as reducing carbon dioxide generate, in-liquid plasma has been used to generate valuable substances and hydrogen energy from the waste solvent. As a waste solve treatment model, decomposition of acetone using 27.12 MHz in-liquid plasma was performed at atmospheric pressure. The produced gases were H2, CO, CH4, C2H2, C2H4, C2H6, and CO2, where proportion of CO2 was less than 0.25%. Two types of carbons with different properties were obtained as byproducts during the acetone decomposition. These carbons analyzed using elemental analysis and Raman spectroscopy. The analysis results revealed that the crystallinity of the carbons different significantly. Undesirable organic matter, such as benzene, was also produced during acetone decomposition. The acetone decomposition efficiency at 407 W discharge power was 0.9 μmol J−1.  相似文献   

10.
In order to slow down the continuing environmental deterioration, regulations for pollutant emissions limitations are increasingly rigorous. The development of new alternative fuels for internal combustion engines is a very interesting solution not only to overcome the pollution problem but also because of the petroleum shortage. In this context, the present work investigates the improvement of a DI diesel engine operating at constant speed (1500 rpm) and under dual fuel mode with eucalyptus biodiesel and natural gas (NG) enriched by various H2 quantities (15, 25 and 30 by v%). The eucalyptus biodiesel quantity injected into the engine cylinder is kept constant, to supply around 10% of the engine nominal power, for all examined engine loads. The engine load is further increased using only the gaseous fuel (NG+H2), which is introduced with the intake air. The effect of H2/NG blending ratio on the combustion parameters, performance and pollutant emissions of the engine is investigated and compared with those of pure NG case. An important benefit in terms of brake specific fuel consumption, reaching a decrease of 4–10% with the 25% H2 blend compared to the pure NG case, is achieved. Concerning the pollutant emissions, NG enrichment with H2 is an efficient solution to enhance the combustion process and hence reduce carbon monoxide, unburned hydrocarbon and soot emissions at high loads where they are important for pure NG. However for the nitrogen oxide emissions, NG blending with H2 is attractive only at low and medium loads where their levels are lower than pure NG.  相似文献   

11.
The coal gasification process is used in commercial production of synthetic gas as a means toward clean use of coal. The conversion of solid coal into a gaseous phase creates opportunities to produce more energy forms than electricity (which is the case in coal combustion systems) and to separate CO2 in an effective manner for sequestration. The current work compares the energy and exergy efficiencies of an integrated coal-gasification combined-cycle power generation system with that of coal gasification-based hydrogen production system which uses water-gas shift and membrane reactors. Results suggest that the syngas-to-hydrogen (H2) system offers 35% higher energy and 17% higher exergy efficiencies than the syngas-to-electricity (IGCC) system. The specific CO2 emission from the hydrogen system was 5% lower than IGCC system. The Brayton cycle in the IGCC system draws much nitrogen after combustion along with CO2. Thus CO2 capture and compression become difficult due to the large volume of gases involved, unlike the hydrogen system which has 80% less nitrogen in its exhaust stream. The extra electrical power consumption for compressing the exhaust gases to store CO2 is above 70% for the IGCC system but is only 4.5% for the H2 system. Overall the syngas-to-hydrogen system appears advantageous to the IGCC system based on the current analysis.  相似文献   

12.
Photovoltaic (PV) to electrolyzer power systems are an attractive research topic since the PV produced power can be optimized by skipping power conversion into AC and producing a direct DC-DC interface. Existing DC-DC power conversion systems to directly interface the PV generation and Hydrogen (H2) electrolyzer are mainly based in interleaved structures or multi-resonant converters. Soft-switching characteristics are also suitable for these conversion topologies and DCX converters are then serious candidates to be used. DCX provides an isolated high efficiency solution but the DCX-based two-stage converter topology must be optimized in order to obtain better efficiency and energy yield. In this work a detailed comparison of DCX topologies is given for a PV to H2 application. The proposed optimized system is validated through simulation in a multi-string electrolysis system, showing the relevance of the solution for this application. The proposed approach reaches a global maximum efficiency of 98.2%.  相似文献   

13.
In this paper, a waste heat recovery system for a cement plant is developed and analyzed with the softwares of Engineering Equation Solver (EES) and Aspen Plus. This system is novel in a way that hydrogen is uniquely produced from waste heat obtained from the cement slag and blended with natural gas for domestic use. The presented system has a steam Rankine cycle combined with an organic Rankine cycle, an alkaline electrolyzer unit, oxygen and hydrogen storage tanks, a blending unit, and a combustor. Moreover, multiple useful outputs are obtained, such as power, hydrogen, and natural gas, as well as hydrogen blend. The power obtained from the organic Rankine cycle becomes the highest when the organic fluid R600a is used as a working fluid. The power generated from turbines is fed to the grid externally and the cement plant for internal use. Also, some power is utilized to produce hydrogen via an alkaline electrolyzer which has an efficiency of 62.94%. With the change of the percentage of hydrogen in the blend from 0% to 50%, the annual consumption of natural gas reduces from 48.261 billion m3 to 37.086 billion m3. Furthermore, the overall exergy and energy efficiencies for the plant are found at 55% and 22%, respectively. The carbon dioxide emissions in the released exhaust gas reduce from 34% to 28% when the same volumetric flow rates of the blend and oxygen gas are fed to the reactor. NO and NO2 emissions increase from 4.06 g/day to 7.45 g/day, and from 0.02 g/day to 0.09 g/day when the hydrogen content is increased from 5% to 20%. Moreover, carbon monoxide emissions decrease from 0.05 g/day to 0.02 g/day, accordingly. As a result, both combustion energy and exergy efficiencies increase with the addition of hydrogen. Furthermore, CO and CO2 emissions decrease with the hydrogen content increases.  相似文献   

14.
Geothermal power plants emit high amount of hydrogen sulfide (H2S). The presence of H2S in the air, water, soils and vegetation is one of the main environmental concerns for geothermal fields. There is an increasing interest in developing suitable methods and technologies to produce hydrogen from H2S as promising alternative solution for energy requirements. In the present study, the AMIS technology is the invention of a proprietary technology (AMIS® - acronym for “Abatement of Mercury and Hydrogen Sulfide” in Italian language) for the abatement of hydrogen sulphide and mercury emission, is primarily employed to produce hydrogen from H2S. A proton exchange membrane (PEM) electrolyzer operates at 150 °C with gaseous H2S sulfur dimer in the anode compartment and hydrogen gas in the cathode compartment. Thermodynamic calculations of electrolysis process are made and parametric studies are undertaken by changing several parameters of the process. Also, energy and exergy efficiencies of the process are calculated as % 27.8 and % 57.1 at 150 °C inlet temperature of H2S, respectively.  相似文献   

15.
Municipal solid waste steam gasification and direct melting system is proposed in this study for H2 production and ash melting simultaneously. Part of the H2 generated in gasification is extracted for combustion with pure oxygen in the melting zone to provide the energy necessary for auto-thermal operation. A simulation model is developed with Aspen Plus to investigate the performance and optimum conditions of the system. For the feedstock with a lower heating value of 18.91 MJ/kg used in this study, 39.8% of the generated H2 needs to be extracted to maintain the heat balance of the system at the gasification temperature of 900 °C, melting temperature of 1400 °C, and S/M of 1. The net H2 yield is ~77.3 kg/t-MSW with a net cold gas efficiency of 49.1% under the same operating condition. An optimum operation condition for T (850–1000 °C) and S/M (0.6–1.0) is determined considering the balance between H2 production ability and the auto-thermal energy balance.  相似文献   

16.
This research work crucially deals with a techno-economic feasibility study for off-grid solar photovoltaic fuel cell (PV/FC) hybrid systems. The hybrid renewable energy system is investigated for feeding electric to remote areas and isolated urban regions in Egypt. To achieve this goal, all the system equipment are modeled, simulated and the area under study data is gathered. The objective function is formulated depending on the total annual cost (TAC). The Flower Pollination Algorithm (FPA), as an efficient recent metaheuristic optimization method, proposed to estimate the optimum number of both PV panels and the FC/electrolyzer/H2 storage tanks set mandatory where the least total net present value (TNPV) is reached.The loss of power supply probability (LPSP) is considered to enhance the performance of the proposed design. The effect of the variation of FC, electrolyzer, H2 storage tanks and the PV power system initial cost on the levelized cost of energy (LCOE) is presented through a comprehensive sensitivity analysis.Through Matlab™ program, the numerical simulation results obtained by the FPA algorithm have been compared to the corresponding outcomes while using the artificial bee colony (ABC) and the Particle Swarm Optimization (PSO) techniques. According to the simulation outcomes analysis, the FPA Algorithm has the less fulfillment time and good rendering between the other algorithms. In addition, the optimum system configuration is acquired using FPA with the optimal hybridization of 27 solar PV, 28 FCs, 58 electrolyzers and 37 H2 storage tanks for an LPSP and PEE of 1.52% and 4.68% respectively. The system TNPV is $3,244,897 with the LCOE of 0.334 $/kWh.  相似文献   

17.
Black liquor (BL) is a by-product in the paper and pulp industry. Although it has good potential for providing energy as an industrial waste, BL's high moisture content limits its usability. In this study, an integrated system to effectively co-produce power and ammonia (NH3) from BL is modeled and evaluated. The modeling and integration are conducted using the principles of exergy recovery and process integration to effectively circulate the energy/heat throughout the whole system. The developed system involves BL evaporation, gasification, syngas chemical looping (SCL), and NH3 synthesis. During SCL process, H2, CO2, and N2-rich gas are produced consecutively in the oxidation, reduction, and combustion reactors, respectively. The designed system can achieve the total energy efficiency of ~50%. The result also suggests that N2-rich gas and pure H2 produced during SCL can be used directly for NH3 synthesis without any additional energy penalty. The additional step for CO2 separation can also be avoided, affording a cleaner and more efficient system that provides complete carbon capture.  相似文献   

18.
This paper deals with energy, exergy, economic, and environmental (4E) analysis of two new combined systems for simultaneous power and hydrogen production. The combined systems are integrated from a city gate station (CGS) system, a Rankine cycle (RC), an absorption power cycle (APC), and a proton exchange membrane (PEM) electrolyzer. Since the pressure of natural gas (NG) in transmission pipeline is high, this pressure is reduced at CGS to a lower pressure. However, this NG has also ample potential to be recovered for multiple productions, too. In the proposed systems, the outlet energy of NG is used for power and hydrogen production by employing RC/APC and PEM electrolyzer. The power sub-cycles are driven by waste heat of CGS, while PEM electrolyzer is driven by this waste heat along with a portion of CGS-Turbine output power. A comprehensive thermodynamic modeling and parametric study of the proposed combined systems are conducted from the 4E analysis viewpoint. The results of two proposed systems are compared with each other, considering a fixed value of 1 MW for RC- and APC-Turbines power. Under the same external conditions and using steam as working fluid of RC, the thermal efficiency of the combined CGS/PEM-RC and -APC systems are obtained 32.9% and 33.6%, respectively. The overall exergy efficiency of the combined CGS/PEM-RC and -APC systems are also calculated by 47.9% and 48.9%, respectively. Moreover, the total sum unit cost of product (SUCP) and CO2 emission penalty cost rate are obtained 36.9 $/GJ and 0.033 $/yr for the combined CGS/PEM-RC and 36 $/GJ and 0.211 $/yr for the combined CGS/PEM-APC systems, respectively. The results of exergy analysis also revealed that the vapor generator (in both systems) has the main contribution in the overall exergy destruction.  相似文献   

19.
Emerging technologies of the 21st Century introduced bi-directional flows between a big number of uncontrollable and unpredictable generators together with a need for energy storage (ES) capable of solving instability issues. With the aim of developing new control methodologies, Skoltech developed a Smart Grid laboratory that includes a variety of energy generators, and storage systems. The capabilities of the grid were expanded with a metal hydride (MH) ES and 1 kW fuel cell. MH ES performs at the near ambient temperatures and relatively low pressure, it has adjustable properties, satisfactory gravimetric H2 density, and a simple thermal management. However, existing technologies require an external heat source, which cannot serve the purpose of autonomous microgrid applications. The aim of this research was to develop and test an air heated metal hydride energy storage system that utilizes the internal waste heat of the system.Based on low power MH ES system experiments [1] and waste heat investigations [2], an air heated system with 1 m3 H2 MH reactor was developed and tested. The experiments were performed in the system that also includes 1 kW fuel cell and an electrolyzer. Obtained results show higher efficiency rate of the system due to waste heat utilization from the air-cooled polymer electrolyte membrane (PEM) FC, ensure mobility for autonomous applications, and open the opportunity for further research in the field of power system control.  相似文献   

20.
Detailed analyses based on mass and energy balances of lignite‐fired air‐blown gasification‐based combined cycles with CO2 pre‐combustion capture are presented and discussed in this work. The thermodynamic assessment is carried out with a proprietary code integrated with Aspen Plus® to carefully simulate the selective removal of both H2S and CO2 in the acid gas removal station. The work focuses on power plants with two combustion turbines, with lower and higher turbine inlet temperatures, respectively, as topping cycle. A high‐moisture lignite, partially dried before feeding the air‐blown gasification system, is used as fuel input. Because the raw lignite presents a very low amount of sulfur, a particular technique consisting of an acid gas recycle to the absorber, is adopted to fulfill the requirements related to the presence of H2S in the stream to the Claus plant and in the CO2‐rich stream to storage. Despite the operation of the H2S removal section representing a significant issue, the impact on the performance of the power plant is limited. The calculations show that a significant lignite pre‐drying is necessary to achieve higher efficiency in case of CO2 capture. In particular, considering a wide range (10–30 wt.%) of residual moisture in the dried lignite, higher heating value (HHV) efficiency presents a decreasing trend, with maximum values of 35.15% and 37.12% depending on the type of the combustion turbine, even though the higher the residual moisture in the dried coal, the lower the extraction of steam from the heat recovery steam cycle. On the other hand, introducing the specific primary energy consumption for CO2 avoided (SPECCA) as a measure of the energy cost related to CO2 capture, lower values were predicted when gasifying dried lignite with higher residual moisture content. In particular, a SPECCA value as low as 2.69 MJ/kgCO2 was calculated when gasifying lignite with the highest (30 wt.%) residual moisture content in a power plant with the advanced combustion turbine. Ultimately, focusing on the power plants with the advanced combustion turbine, air‐blown gasification of lignite brings about a reduction in HHV efficiency equal to almost 1.5 to 2.8 percentage points, depending on the residual moisture in the dried lignite, if compared with similar cases where bituminous coal is used as fuel input. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号