首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Brazil has great potential for diversification and decarbonization of its energy matrix, with the insertion of a clean and renewable energy source such as hydrogen. This paper seeks to evaluate the surplus energy potential of solar and nuclear plants installed in the country for the production of green and purple hydrogen using high and low temperature electrolysis methods. Based on official reports and databases of energy production and demand, the results indicated that the total potential of surplus solar energy is equal to 4.29E+07 (kWh.d?1). Further, the total potential of electricity production from the hydrogen obtained through surplus solar energy was equivalent to1.87E+07 (kWh.d?1); and the total cost of producing solar hydrogen is equal to 1.07E+03 (USD.kWh?1). In conclusion, the study contributed to demonstrate the pathways to the establishment of strategies that assist the transition to a hydrogen economy in Brazil.  相似文献   

2.
Concentrated solar thermal technology is considered a very promising renewable energy technology due to its capability of producing heat and electricity and of its straightforward coupling to thermal storage devices. Conventionally, this approach is mostly used for power generation. When coupled with the right conversion process, it can be also used to produce methanol. Indeed methanol is a good alternative fuel for high compression ratio engines. Its high burning velocity and the large expansion occurring during combustion leads to higher efficiency compared to operation with conventional fuels. This study is focused on the system level modeling of methanol production using hydrogen and carbon monoxide produced with cerium oxide solar thermochemical cycle which is expected to be CO2 free. A techno-economic assessment of the overall process is done for the first time. The thermochemical redox cycle is operated in a solar receiver-reactor with concentrated solar heat to produce hydrogen and carbon monoxide as the main constituents of synthesis gas. Afterwards, the synthesis gas is turned into methanol whereas the methanol production process is CO2 free. The production pathway was modeled and simulations were carried out using process simulation software for MW-scale methanol production plant. The methanol production from synthesis gas utilizes plug-flow reactor. Optimum parameters of reactors are calculated. The solar methanol production plant is designed for the location Almeria, Spain. To assess the plant, economic analysis has been carried out. The results of the simulation show that it is possible to produce 27.81 million liter methanol with a 350 MWth solar tower plant. It is found out that to operate this plant at base case scenario, 880685 m2 of mirror's facets are needed with a solar tower height of 220 m. In this scenario a production cost of 1.14 €/l Methanol is predicted.  相似文献   

3.
In this study, a techno-economic analysis of the capacity of Morocco to produce hydrogen from solar energy has been conducted. For this reason, a Photovoltaic-electrolyze system was selected and the electricity and hydrogen production were simulated for 76 sites scattered all over the country. The Global Horizontal Irradiation (GHI) data used for the simulation were extracted from the CAMS-Rad satellite database and meteorological stations at ground level.Before simulations, the accuracy of the GHI values from the satellite dataset has been checked, and their uncertainties was calculated against accurate data measured in-situ. After that, the simulated values of the hydrogen mass were interpolated using a GIS software to create a Hydrogen production map of Morocco. Finally, an economical investigation of electricity and hydrogen production costs has been conducted by calculating the LCOE and LCOH2.Results show that the satellite dataset has a mean average deviation of 6.8% which is a very acceptable error rang. Also, it was found that Morocco have a high potential for hydrogen production, with a daily annual production that varies between 6489 and 8308 Tons/km2. Moreover, the cost of electricity and hydrogen production in the country are in the range of 0.077–0.099 $/kWh and 5.79–4.64 $/Kg respectively.The findings of this study are with high importance as they provide an overall perspective of the country potential of hydrogen production for policy makers and investors, and it was motivated by the lack of information on the subject in the literature since it's, at the best of our knowledge, the first study assessing the hydrogen production from solar for the whole country.  相似文献   

4.
Hydrogen production from the electrolysis of water by sea or lake waters used as electrolyte plays a crucial role in providing sustainable hydrogen production. Production of hydrogen from these natural sources is highly utilized from small scale to complex applications due to water resources' inconsumable potential. In this study, the hydrogen production potential of Turkey's different regions such as the Black Sea, Aegean Sea, Marmara Sea, Mediterranean Sea, Lake Van, Ağcaşar Dam, Yeşilırmak, and Kızılırmak rivers are investigated. Solar energy potential values are used as the current sources for simulating their renewable energy hydrogen production values. According to the results, higher hydrogen production rates are obtained from the Marmara and Lake Van regions. It is concluded that the hydrogen production potential is highly dependent on the pH values of the water source and the salinity rate of seawater that is descending from the Mediterranean Sea to the Black Sea region. Besides, solar radiation, sunshine duration, and water temperature are the other essential factors. Moreover, Mediterranean Sea water (Içel-Anamur) has about 23% higher hydrogen production than Lake Van and has the most increased hydrogen production by 80 L m-2 in May and June.  相似文献   

5.
Sustainable production of hydrogen at high capacities and low costs is one the main challenges of hydrogen as a future alternative fuel. In this paper, a new hydrogen production system is designed and fabricated to investigate hydrogen production using aluminum and solar energy. Numerous experiments are performed to evaluate the hydrogen production rate, quantitatively and qualitatively. Moreover, correlations between the total hydrogen production volume over time and other parameters are developed and the energy efficiency and conversion ratio of the system are determined. Also, a method is developed to obtain an optimal and stable hydrogen production rate based on system scale and consumed materials. It is observed that at low temperatures, the hydrogen production volume, efficiency and COP of the system increase at a higher sodium hydroxide molarity. In contrast, at high temperatures the results are vice versa. The maximum hydrogen production volume, hydrogen production rate, reactor COP and system efficiency using 0.5 M NaOH solution containing 3.33 g lit?1 aluminum at 30 °C are 6119 mL, 420 mL min?1, 1261 mL H2 per 1 g of Al, and 16%, respectively.  相似文献   

6.
Electricity generation via direct conversion of solar energy with zero carbon dioxide emission is essential from the aspect of energy supply security as well as from the aspect of environmental protection. Therefore, this paper presents a system for hydrogen production via water electrolysis using a 960 Wp solar power plant. The results obtained from the monitoring of photovoltaic modules mounted in pairs on a fixed, a single-axis and a dual-axis solar tracker were examined to determine if there is a possibility to couple them with an electrolyzer. Energy performance of each photovoltaic system was recorded and analyzed during a period of one year, and the data were monitored on an online software service. Estimated parameters, such as monthly solar irradiance, solar electricity production, optimal angle, monthly ambient temperature, and capacity factor were compared to the observed data. In order to get energy efficiency as high as possible, a novel alkaline electrolyzer of bipolar design was constructed. Its design and operating UI characteristic are described. The operating UI characteristics of photovoltaic modules were tuned to the electrolyzer operating UI characteristic to maximize production. The calculated hydrogen rate of production was 1.138 g per hour. During the study the system produced 1.234 MWh of energy, with calculated of 1.31 MWh , which could power 122 houses, and has offset 906 kg of carbon or an equivalent of 23 trees.  相似文献   

7.
A comprehensive life cycle assessment (LCA) is carried out for three methods of hydrogen production by solar energy: hydrogen production by PEM water electrolysis coupling photothermal power generation, hydrogen production by PEM water electrolysis coupling photovoltaic power generation, and hydrogen production by thermochemical water splitting method using S–I cycle coupling solar photothermal technology. The assessment also contains an evaluation of four environmental factors which are global warming potential, acidification potential, ozone depletion potential, and nutrient enrichment potential. After conducting a quantitative analysis of all three methods with environmental factors being considered, a conclusion has been drawn: The global warming potential and the acidification potential of the thermochemical water splitting by S–I cycle coupling solar photothermal technology are 1.02 kg CO2-eq and 6.56E-3 kg SO2-eq. And this method has significant advantages in the environmental impact of the whole ecosystem.  相似文献   

8.
The current study develops a hydrogen map concept where renewable energy sources are considered for green hydrogen production and specifically investigates the solar energy-based hydrogen production potential in Turkey. For all cities in the country, the available onshore and offshore potentials for solar energy are considered for green hydrogen production. The vacant areas are calculated after deducting the occupied areas based on the available governmental data. Abundant solar energy as a key renewable energy source is exploited by photovoltaic cells. To obtain the hydrogen generation potential, monocrystalline and polycrystalline type solar cells are considered, and the generated renewable electricity is directed to electrolysers. For this purpose, alkaline, proton exchange membrane (PEM), and solid oxide electrolysers (SOEs) are considered to obtain the green hydrogen. The total hydrogen production potential for Turkey is estimated to be between 415.48 and 427.22 Million tons (Mt) depending on the type of electrolyser. The results show that Erzurum, Konya, Sivas, and Van are found to be the highest hydrogen production potentials. The main idea is to prepare hydrogen map in detail for each city in Turkey, based on the solar energy potential. This, in turn, can be considered in the context of the current policies of the local communities and policy-makers to supply the required energy of each country.  相似文献   

9.
This study is directed to specifically clear on the data's parametric effect on the hydrogen production utilizing the sun based energy through the water electrolysis. The Analysis of Variance (ANOVA) technique is used to check and verify on the potentials of other factual demonstrative devices with respect to the real and anticipated quality, the reaction in the middle of residuals and the anticipated 3-D surface and shape plot investigation. The database of the created model was created in view of the profound study to be carried out. A factual model was produced and an exploratory acceptance of the investigation of polynomials was set up by applying the Response Surface Methodology (RSM). The factual investigation of the informative parameters and the resulting reactions demonstrated that the proposed model and the analytical results would appropriately indicate an anticipated predominant fit.  相似文献   

10.
This article considers Algeria as a case study for the evaluation of the solar hydrogen production potential. The study relates to the design of a hydrogen generating station by water electrolysis whose energy resources are solar. The electricity supply is done by a solar tower power plant. The numerical simulation of the hydrogen production for the installation proposed is made while being based on the characteristic equations governing the electrolysis of water, hydraulic pumping system and the solar tower. The hydrogen production rate is given for various values of the solar radiation and several sites of Algeria. The results obtained by the established computer code, and of which the required goal is the determination of the most favorable conditions for a better production of hydrogen, are presented and discussed.  相似文献   

11.
This article provides a critical discussion of prospects of solar thermal hydrogen production in terms of technological and economic potentials and their possible role for a future hydrogen supply. The study focuses on solar driven steam methane reforming, thermochemical cycles, high temperature water electrolysis and solar methane cracking. Development status and technological challenges of the processes and objectives of ongoing research are described. Estimated hydrogen production costs are shown in comparison to other options. A summary of current discussions and today's scenarios of future use of hydrogen as an energy carrier and a brief overview on the development status of end-use technologies characterise uncertainties whether hydrogen could emerge as important energy carrier until 2050. Another focus is on industrial hydrogen demand in areas with high direct solar radiation which may be the main driver for the further development of solar thermal hydrogen production processes in the coming decades.  相似文献   

12.
Electrolysis is a relatively simple process for obtaining hydrogen and can be combined with use of renewable energy sources, such as solar photovoltaic energy, for clean, sustainable gas production. This study designed a cylindrical electrolytic cell made of acrylic and 304 stainless steel electrodes to produce hydrogen. The electrolyte used was sodium hydroxide (NaOH 2–5 mol L?1), and the direct current voltages applied were 2.0, 2.7, and 3.4 V. The maximum hydrogen production was achieved with 5.0 mol L?1 NaOH and 3.4 V electric voltage. The system was connected to a photovoltaic panel of 20 W and exposed to solar radiation from 10 a.m. to 2 p.m. Approximately 2 L of hydrogen was produced within a period, and an average irradiance of 800.0 W m?2 ± 60 W m?2 was achieved. The system was stable throughout the tests.  相似文献   

13.
The paper discusses the feasibility of the use solar energy into hydrogen production using a photovoltaic energy system in the four main cities of Iraq. An off-grid photovoltaic system with a capacity of 22.0 kWp, an 8.0 kW alkaline electrolyser, a hydrogen compressor, and a hydrogen tank were simulated for one year in order to generate hydrogen. A mathematical model of the proposed system behavior is presented using MATLAB/Simulink, considering nine years from the 2021 to 2030 project span using hourly experimental weather data. The outcomes demonstrated that the annual hydrogen production ranged from 1713.92 kg up to 1891.12 kg, oxygen production ranged from 1199.74 to 1323.78 kg, and water consumption ranged from 7139.91 L to 7877.29 L. The hydrogen evaluated costs equal to $3.79/kg. The results show that the optimum site for solar hydrogen production systems can be established in the midwest of Iraq and in other cities with similar climates, especially those that get a lot of sunlight.  相似文献   

14.
A novel system of hydrogen production by biomass gasification in supercritical water using concentrated solar energy has been constructed, installed and tested at the State Key Laboratory of Multiphase Flow in Power Engineering (SKLMF). The “proof of concept” tests for solar-thermal gasification of biomass in supercritical water (SCW) were successfully carried out. Biomass model compounds (glucose) and real biomass (corn meal, wheat stalk) were gasified continuously with the novel system to produce hydrogen-rich gas. The effect of direct normal solar irradiation (DNI) and catalyst on gasification of biomass was also investigated. The results showed that the maximal gasification efficiency (the mass of product gas/the mass of feedstock) in excess of 110% were reached, hydrogen fraction in the gas product also approached to 50%. The experimental results confirmed the feasibility of the system and the advantage of the process, which supports future work to address the technical issues and develop the technology of solar-thermal hydrogen production by gasification of biomass in supercritical water.  相似文献   

15.
16.
Hydrogen is a sustainable fuel option and one of the potential solutions for the current energy and environmental problems. Its eco-friendly production is really crucial for better environment and sustainable development. In this paper, various types of hydrogen production methods namely solar thermal (high temperature and low temperature), photovoltaic, photoelecrtolysis, biophotolysis etc are discussed. A brief study of various hydrogen production processes have been carried out. Various solar-based hydrogen production processes are assessed and compared for their merits and demerits in terms of exergy efficiency and sustainability factor. For a case study the exergy efficiency of hydrogen production process and the hydrogen system is discussed in terms of sustainability.  相似文献   

17.
The present study develops a new solar and geothermal based integrated system, comprising absorption cooling system, organic Rankine cycle (ORC), a solar-driven system and hydrogen production units. The system is designed to generate six outputs namely, power, cooling, heating, drying air, hydrogen and domestic hot water. Geothermal power plants emit high amount of hydrogen sulfide (H2S). The presence of H2S in the air, water, soils and vegetation is one of the main environmental concerns for geothermal fields. In this paper, AMIS(AMIS® - acronym for “Abatement of Mercury and Hydrogen Sulphide” in Italian language) technology is used for abatement of mercury and producing of hydrogen from H2S. The present system is assessed both energetically and exergetically. In addition, the energetic and exergetic efficiencies and exergy destruction rates for the whole system and its parts are defined. The highest overall energy and exergy efficiencies are calculated to be 78.37% and 58.40% in the storing period, respectively. Furthermore, the effects of changing various system parameters on the energy and exergy efficiencies of the overall system and its subsystems are examined accordingly.  相似文献   

18.
19.
Energy and exergy analyses are reported of hydrogen production via an ocean thermal energy conversion (OTEC) system coupled with a solar-enhanced proton exchange membrane (PEM) electrolyzer. This system is composed of a turbine, an evaporator, a condenser, a pump, a solar collector and a PEM electrolyzer. Electricity is generated in the turbine, which is used by the PEM electrolyzer to produce hydrogen. A simulation program using Matlab software is developed to model the PEM electrolyzer and OTEC system. The simulation model for the PEM electrolyzer used in this study is validated with experimental data from the literature. The amount of hydrogen produced, the exergy destruction of each component and the overall system, and the exergy efficiency of the system are calculated. To better understand the effect of various parameters on system performance, a parametric analysis is carried out. The energy and exergy efficiencies of the integrated OTEC system are 3.6% and 22.7% respectively, and the exergy efficiency of the PEM electrolyzer is about 56.5% while the amount of hydrogen produced by it is 1.2 kg/h.  相似文献   

20.
This paper uses the TRNSYS software to investigate the hourly energy generation potential, storage, and consumption via an electrolyzer and a fuel cell in the Canadian city of Saskatoon, which is a region with high solar and wind energy potential. For this purpose, a location with an area of 10,000 m2 was considered, in which the use of solar panels and vertical-axis wind turbines (VAWTs) were simulated. In the simulation, the solar panels were placed at specific distances, and the energy generation capacity, amount of produced hydrogen, and the energy available from the fuel cell were examined hourly and compared to the case with wind turbines placed at standard distances. The results indicated energy generation capacities of 1,966,084 kWh and 75,900 kWh for the solar panels and the wind turbines, respectively, showing the high potential of solar panels compared to wind turbines. Moreover, the fuel cells in the solar and wind systems can produce 733,077 kWh and 22,629 kWh of energy per year, respectively, if they store all of the received energy in the form of hydrogen. Finally, the hourly rates of hydrogen production by the solar and wind systems were reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号