首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Wu  Xin  Luo  Qunyi  Yin  Sixing  Lu  Wentao  He  Hua  Guo  Cun-Yue 《Journal of Materials Science》2021,56(35):19311-19328

Organic/inorganic thermoelectric composites have played an important role in the development of new, green, and renewable energy sources with potential applications in efficient thermal management, flexible electronics, and bioelectronics. Electrochemical syntheses, including electropolymerization, electrochemical deposition, electrochemical doping, electrochemical post-processing, etc., require no addition of surfactants or oxidants, the products of which are easy to separate and purify, providing clean, efficient, and facile routes for the preparation of organic thermoelectric materials and their composites. In this review, the preparation, properties, and applications of organic/inorganic thermoelectric composites from electrochemical synthesis were reviewed in detail, offering a perspective on the recent advances in the field.

Graphical abstract
  相似文献   

2.
Gao  Yuan  Zhou  Xinghai  Zhang  Maliang  Li  Zhenhuan 《Journal of Materials Science》2021,56(20):11736-11748

In view of the disadvantages of concentration polarization and trade-off effects in the application of membrane in desalination field, oxide-nano graphene oxide/polyamide (O-NGO/PA) loose intermediate layer and PA ultra-thin dense layer were introduced to fabricate PA/O-NGO/polyphenylene sulfide composite membrane with sandwich structure via multi-step interfacial polymerization (MS-IP) method. The selective permeation mechanism of ultrathin layer produced by different aqueous monomers (PIP and MPD) was studied, the effect of its physicochemical structure on the relief of concentration polarization phenomenon and the breakthrough of trade-off effect was analyzed. The ultra-thin and dense PA layer mainly played the role of interception and shortened the water molecular penetration path. In the retention test of metal salt solution, compared with the rough surface, it was found that the smooth surface was more conducive to the diffusion of intercepted metal ions into the feed solution, thus alleviating the concentration polarization phenomenon.

Graphical abstract
  相似文献   

3.

In this critical note, the thermal stability behavior of ultra-fine grained (UFG) and nano-structured (NS) metals and alloys produced through severe plastic deformation (SPD) techniques is reviewed. For this case, the common engineering metals with body-centered cubic (BCC), face-centered cubic (FCC), and hexagonal close-packed (HCP) crystal structures such as aluminum, copper, nickel, magnesium, steel, titanium, and their relating alloys were assessed. Microstructural evolution in these severely deformed materials following post-processing annealing treatment was investigated for various times and temperatures below the recrystallization point. The microstructure development reported in the literature was studied in terms of the stable grain structures correlated with different levels of plastic straining. The stacking fault energy (SFE) is noted to be a key issue which has a critical influence in predicting the coalescence or coarsening behavior of ultra-fine and nanoscale grains after SPD treatment by controlling the cross-slip phenomenon for screw dislocations.

Graphical Abstract
  相似文献   

4.

The properties of nanoparticle–polymer composites strongly depend on the network structure of the polymer matrix. By introducing nanoparticles into a monomer (solution) and subsequently polymerizing it, the formation of the polymer phase influences the mechanical and physicochemical properties of the composite. In this study, semi-conducting indium tin oxide (ITO) nanoparticles were prepared to form a rigid nanoparticle scaffold in which 1,6-hexanediol diacrylate (HDDA), together with an initiator for photo-polymerization, was infiltrated and subsequently polymerized by UV light. During this process, the polymerization reaction was characterized using rapid scan Kubelka–Munk FT-IR spectroscopy and compared to bulk HDDA. The conductivity change of the ITO nanoparticles was monitored and correlated with the polymerization process. It was revealed that the reaction rates of the radical initiation and chain propagation are reduced when cured inside the voids of the nanoparticle scaffold. The degree of conversion is lower for HDDA infiltrated into the mesoporous ITO nanoparticle scaffold compared to purely bulk-polymerized HDDA.

Graphical abstract
  相似文献   

5.

Nanotechnologies known as a developing applied science have significant global socioeconomic values and many advantages obtained from nanoscale materials. Its applications can have significant effects on the performance of organizations. The advance of two-dimensional (2D) MXene-derived QDs (MQDs) is currently in the initial stages. Scholars have shown distinguished optical, electronic, thermal and mechanical attributes by surface chemistry and versatile transition metal. In this field of study, many applications are introduced like energy electromagnetic interference shielding, storage, sensors, transparent electrodes, photothermal therapy, catalysis and so on. The vast range of optical absorption attributes of MQDs along with high electronic conductivity has been detected to be key attributes because of their achievement in the mentioned usages. Currently, relatively little materials are highly known because of their basic electronic and optical properties, which can limit their full potentials. From a theoretical and experimental point of view, in this work, electronic and optical properties of MQDs along with applications corresponding to those properties were evaluated.

Graphical abstract
  相似文献   

6.
Cen  Hongyu  Wu  Chonggang  Chen  Zhenyu 《Journal of Materials Science》2022,57(3):1810-1832

Extension of corrosion inhibitors from traditional molecular-scale to nanoscale will not only be significant to develop green and efficient inhibitors, but also supplement the discipline system of corrosion inhibitors. However, many research on the interfacial behavior of nano-inhibitors have ignored the special colloidal properties of nanoparticles and show no obvious differences with traditional inhibitors. In this study, graphene oxide (GO) was functionalized with polydopamine (PDA) via covalent modifications and self-polymerization, and GO-PDA was studied as a corrosion inhibitor of carbon steel in HCl solution. Diversified measurements confirmed that GO-PDA can effectively protect carbon steel from corrosion, and the inhibition efficiency almost reached 90% at 100 mg/L. Interfering factors including immersion time and concentration were investigated. The lamellar nanoparticles adsorbed on the surface of carbon steel have formed a hydrophobic film in micro-nano structures. The transition from a negative charge on the GO surface to a positively charged GO-PDA contributed to adsorption at the interface. An initial model of nano-inhibitor was established to explicate the inhibition mechanism.

Graphical abstract
  相似文献   

7.
Chen  Weiwang  Zhou  Xiaomeng  Wan  Mengmeng  Tang  Yating 《Journal of Materials Science》2022,57(28):13233-13263

Polyimide aerogels are promising for diverse applications owing to their nanoporous structure and superior performance in thermal insulation, dielectric protection, etc. However, the severe shrinkage they usually suffer has long been a threat, and can pose great challenges to their shape-stable preparation and reliable applications. It is very important to clarify the effects of various factors on the shrinkage of PI aerogels and the effective strategies available for shrinkage reduction. These are also the focuses of the present review, to provide guidance for preparing PI aerogels with greatly reduced shrinkage, and thereby improved shape stability and use reliability. Since the shrinkage of PI aerogels is quite a complex issue, further studies on PI aerogels against shrinkage deserve continuous attention.

Graphical abstract
  相似文献   

8.
Liao  Meiju  Su  Long  Deng  Yaocheng  Xiong  Sheng  Tang  Rongdi  Wu  Zhibin  Ding  Chunxia  Yang  Lihua  Gong  Daoxin 《Journal of Materials Science》2021,56(26):14416-14447

WO3, a visible light reaction catalyst, absorbs light at a wavelength of 470 nm and has many advantages, such as strong stability, long life, non-toxicity, low cost, and suitable band edges. In this review, the photocatalytic mechanism of WO3 in water pollution treatment is introduced, as well as a systematic summary, and some main strategies for improving the photocatalytic activity of WO3 in water pollution treatment are introduced, for example surface and morphology control, synthetic heterojunctions, and doping element. Finally, the main conclusions and prospects of WO3-based photocatalysts are pointed out. It can be expected that this review can provide guidance for designing low-cost, high-efficiency new WO3-based photocatalysts in the process of water pollution treatment and can meet the application prospects of efficient utilization of solar degradation in the field of environmental purification.

Graphical abstract
  相似文献   

9.
Yang  Jiyuan  Shi  Minghui  Wu  Wei  Zhang  Qunchao  You  Jun  Shi  Dean  Jiang  Tao 《Journal of Materials Science》2021,56(36):20126-20137

Silicon has become one of the most emerging anode materials in Li-ion batteries due to its excellent specific capacity. The incorporation of binders can significantly reduce the volume expansion of silicon during the cycling process. In this work, a novel type of cross-linked siloxane-based copolymer, poly (tert-butyl acrylate-co-vinyl tri-lactate ethyl silane) (TBA-VTLES) was designed and utilized as the binder for the silicon anode in Li-ion batteries to alleviate the inner stress of adverse volume changes and improve the electrochemical performance. The hard TBA and soft VTLES were interwoven into a 3D network to achieve the adhesive action via free radical polymerization. The soft chains in TBA-VTLES can enhance the cohesion of the copolymer to disperse residual stress, and thus avoid structural damage during lithiation. Meanwhile, the rigid chains can provide sufficient mechanical strength to maintain the integrity of silicon anode during de-lithiation. Moreover, the presence of TBA-VTLES can improve the adhesive strength between the copper collector and the binder. This novel type of siloxane-based copolymer binder with hardness and softness provides a feasible way to improve the silicon anode performance of Li-ion batteries.

Graphical abstract

The synthesized cross-linked copolymer binder can improve the interfacial interaction and electrochemical performance of Si anode-- present in Graphical abstract figure-- need or not.

  相似文献   

10.
Wei  Yongxing  Bai  Chenxing  Jin  Changqing  Zhu  Weitong  Jian  Zengyun  Nan  Ruihua  Hu  Lin  Dai  Zhonghua 《Journal of Materials Science》2021,56(20):11838-11846

Here, we report a multiferroic relaxor material 0.41Bi(Ni1/2Zr1/2)O3–0.59PbTiO3, which exhibits a large piezoelectric coefficient (d33, 391 pC/N), high remnant polarization (Pr, 52.3 μC/cm2) and a high electrical freezing temperature (Tf, 498 K). The electric-field-induced transition from a cubic-like phase to a tetragonal phase was confirmed by the XRD patterns and first-cycle bipolar electrostrain loop. The magnetization and magnetic field relationship changes from nonlinear to linear when cooled from 300 to 2 K. The unusual trend in magnetic behavior could be interpreted as the transitions between the super short-range orderings. Furthermore, the maximum value of magnetization shows a 14% decrease at 300 K after electrical poling.

Graphical abstract
  相似文献   

11.
Li  Xiaowei  Zhang  Haiyang  Dong  Jing  Ma  Shujuan  Ou  Junjie 《Journal of Materials Science》2021,56(32):18006-18018

A novel bilirubin adsorbent with high hydrophilicity was facilely synthesized via one-step hydrothermal carbonization reaction by using glucose and [3-(methacryloylamino)propyl]trimethylammonium chloride (MAPTAC) as precursors, in which sustainable carbohydrate could be converted into functionalized carbonaceous materials enriched with quaternary ammonium groups using an environmentally mild process. The properties of synthesized adsorbents were characterized by helium ion microscopy, static water contact angle measurement, FT-IR, elemental analysis and nitrogen adsorption/desorption measurement. The contact angle results indicated that these materials possessed very good hydrophilicity along with the lowest contact angle at 16.2°. Moreover, the hydrophilic adsorbent prepared by only one-step demonstrated good adsorption capacity toward bilirubin (141 mg/g) than commercialized activated carbon (70 mg/g) and low non-specific adsorption toward albumin (0.21%), which had great potential to be used in hemoperfusion. In addition, kinetic adsorption behaviors were conducted using pseudo-first-order and pseudo-second-order models. The regression results showed that the kinetic adsorption data were more accurately represented by pseudo-second-order model. The equilibrium adsorption data were analyzed using two widely applied isotherm models: Langmuir and Freundlich. The results revealed that Langmuir isotherm matched the experimental results well.

Graphical Abstract
  相似文献   

12.

Fumed silica nanoparticles (FSN) are one of the most common synthetic forms of silica, but prolonged exposure leads to cell toxicity and apoptosis due to reactive oxygen species (ROS) generation and cell membrane perturbation resulting from hydrogen bonding and electrostatic interactions. Increasing attention is being put on synthesizing FSN material that is safer both for workers involved in large-scale industrial production, and consumers coming in contact with FSN additives. In the present work, we explore the molecular structural differences and efficacy of Al- and Ti-metal-doped FSN which has previously been shown to reduce toxicity effects of FSN. We use a combination of 29Si and 27Al solid-state magic angle spinning (MAS) NMR, Raman spectroscopy, and thermogravimetric analysis (TGA) to probe the surface and bulk structure and quantify the adsorption capacity and reactivity of the metal-doped FSN with respect to amino acid thermal condensation. Alanine was selected as the amino acid of choice for its simplicity and ubiquity in biochemical reactions. The results indicate that metal doping has a modest impact on the fumed silica molecular structure with a small decrease in amino acid adsorption capacity and thermal condensation reactivity as a function of increased metal doping.

Graphical Abstract
  相似文献   

13.

Silica aerogel composites reinforced with different aramid fibres have been synthesized and compared considering their potential use in thermal protection systems of Space devices. These composites were prepared from tetraethoxysilane and vinyltrimethoxysilane and the network was strengthened with aramid fibres. The results showed that the physical and chemical properties of the fibres were relevant, leading to composites with different properties/performance. In general, the obtained values for bulk density were low, down to 150 kg m?3. Very good thermal properties were achieved, reaching thermal conductivities bellow 30 mW m?1 K?1, and thermal stability up to 550 °C in all cases. Short length fibres produce stiffer composites with lower thermal conductivities, while among longer fibres, meta-aramid-containing fibres lead to nanocomposites with best insulation performance. Standard tests for Space materials qualification, as thermal cycling and outgassing, were conducted to assess the compliance with Space conditions, confirming the suitability of these aerogel composites for this application.

Graphical abstract
  相似文献   

14.

In this study, poly(L-lactic acid) (PLA)/low molar mass alkali lignin (aL) (1%, 5% and 10% w/w) composites were prepared primarily for a comprehensive understanding of the effect of aL on their antimicrobial properties, biocompatibility and cytotoxic behavior. The properties were evaluated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, thermogravimetry and X-ray diffraction. The mechanical, water vapor barrier properties and photodegradability were analyzed as well. The results showed a significant inhibiting effect of aL on the crystallization behavior of PLA, increased water barrier properties (up to 73%) and photodegradability. PLA/aL composites showed a tenfold reduction in Gram-positive bacteria viability, very good cellular response and very low cytotoxicity levels, thus validating these materials as non-cytotoxic and with high potential to be used as food packaging.

Graphical abstract
  相似文献   

15.

The electrical conductivity and piezoresistivity of multiwall carbon nanotube (MWCNT)/polypropylene (PP) composites obtained by extrusion are investigated, with particular attention to the possible directional effects generated during the extrusion process. This is accomplished by investigating the electrical and electromechanical responses of the nanocomposites at three MWCNT weight concentrations (3, 4 and 5 wt%) in three directions, viz. the extrusion direction, transverse to extrusion (in-plane) and through thickness. Higher electrical conductivity in the extrusion direction was more evident for the lowest MWCNT content. However, the piezoresistive sensitivity was similar in all directions. Films with 4 wt% showed the highest piezoresistive sensitivity, reaching gage factors of?~?4.5 for strains between 0 and 0.8%, and?~?10.2 for strains between 1 and 3%. After an initial drop in the electrical resistance, concomitant with stress relaxation, the changes in electrical resistance showed large reproducibility. Digital image correlation conducted during cyclic piezoresistive testing at 0.8% strain indicates small accumulation of local plasticity as the number of cycles increases, especially in zones near the electrodes. These irreversible changes in the material are expected to trigger the permanent changes in the electrical resistance measured.

Graphical abstract
  相似文献   

16.
Zhang  Yuhang  Li  Jiejie  Zhou  Hongjian  Hu  Yiqun  Ding  Suhang  Xia  Re 《Journal of Materials Science》2021,56(28):15906-15920

Cold welding technique at room temperature is the preferred option in nano-assembly and nano-jointing. In this study, the cold welding behavior and mechanical strength of Cu50Zr50 metallic glass nanowires (MGNWs) in head-to-head contact are investigated by molecular dynamics simulation based on the embedded atom method potential. Effects of welding velocity, operating temperature, and size of nanowires are discussed with the consideration of stress, shear strain, atomic deformation processes, and weld quality. Our simulation results demonstrate that a desirable weld quality can be obtained at room temperature. With an increase in welding velocity, the shear deformation zones of the welded MGNWs increase, leading to a decrease in mechanical strength. However, the effect of temperature on the weld quality is not pronounced. Besides, the elongation ability of the welded MGNWs increases with increasing diameters of nanowires. Smaller diameter results in better weld quality due to the size effect of metallic glass. For a pair of MGNWs with different diameters, the necking and fracture of the welded MGNWs occur in the regions of the nanowire with a relatively smaller diameter. This study carries major implications for the fabrication and structural assembly of metallic glass-based nanomaterials.

Graphical Abstract
  相似文献   

17.
Gao  Xiang  Cong  Xinyi  Wang  Yue  Zhong  Wenjie  Huang  Lan  Wang  Xinyan  Chen  Poyu  He  Zhangmin  Hu  Bo  Song  Jinlin 《Journal of Materials Science》2021,56(33):18668-18683

Rescuing the compromised function of periodontal ligament stem cells (PDLSCs) due to hyperglycemia-induced oxidative stress and reducing the risk of postoperative infection around the interface of scaffold materials are of prime importance for periodontal regeneration in diabetes mellitus. To this end, a facile and green approach for the establishment of surfaces with antioxidative and antibacterial properties was developed in this work. Briefly, the surfaces of polystyrene (PS) plate were pre-modified with polydopamine and then coated with a genipin crosslinked layer-by-layer (LbL) assembly, which was established by using the antibacterial polyelectrolytes carboxymethyl chitosan (CMC) and polylysine (PLL) as building block. Metformin as an antioxidative agent was incorporated into the discrete nanolayers to achieve sustainable release. Our research showed that metformin-loaded LbL assembly presented favorable cytocompatibility. The released metformin could partially rescue the impaired osteogenic function of human PDLSCs induced by high glucose in vitro. Meanwhile, owing to the antibacterial activity of CMC and PLL, the colonization of common pathogenic bacteria related to periodontal disease could be disturbed on the surface of developed coatings. Accordingly, the presented strategy for surface functionalization of materials in our study holds a promising potential for periodontal regeneration application in diabetic patients.

Graphical abstract
  相似文献   

18.
Li  Zhenwei  Lin  Zijia  Han  Meisheng  Mu  Yongbiao  Yu  Jie 《Journal of Materials Science》2021,56(26):14542-14555

Carbon nanomaterials have shown great potential as electric heating elements in electrothermal applications. However, carbon-based heating elements with high flexibility, ultrafast electrothermal response, low driving voltage, high heating temperature, and stretchability are still lacking. Here, continuous electrospun carbon nanofiber films (CNFFs) and corresponding composite films additionally containing silicone (CSCFs) as electric heating elements are proposed. CNFFs were prepared by electrospinning and subsequent heat treatment, and CSCFs were prepared by composing CNFFs with silicone via hot-pressing procedure. Both of them have shown excellent performance as electrothermal films, such as ultrafast electrothermal response, high resistance adjustability, high flexibility, high operation stability, and high infrared emissivity. In particular, a temperature as high as 200 °C can be reached within 2 s at 8 V. Suitable robustness and flexibility allow CSCFs to bear various deformations, such as bending, twisting, folding, and even stretching by a factor of 1.3, without worsening electrothermal performance. Also, excellent water resistance has been confirmed. The superior electrothermal performance is mainly attributed to the high electrical conductivity, continuous fiber structure, high specific surface area, and adjustability of nanofiber stacking density and thickness of CNFFs.

Graphical abstract
  相似文献   

19.
He  Qihang  Wang  Xuejiao  Zhou  Pengcheng  Ge  Qianao  Fu  Tongxing  Chen  Shouxian  Xiao  Feng  Yang  Peilin  He  Ping  Jia  Lingpu  Yang  Dingming 《Journal of Materials Science》2021,56(36):20037-20049

The development of hydrogen production via environment-friendly and efficient electrochemical water splitting technology leans heavily on the exploitation of highly active and durable oxygen evolution reaction (OER) electrocatalysts. Herein, nanocoral-like cerium-activated cobalt selenide (Ce-CoSe2) nanocomposites to enhance the OER catalytic activity have been successfully prepared by one-pot hydrothermal route via simply altering the cerium content. Owing to the ingenious introduction of cerium, as-prepared Ce-CoSe2 electrode displays remarkable OER performance in comparison with CoSe2. The nanocoral-like Ce-CoSe2 catalyst prepared under optimal condition just needs low overpotential of 276 and 398 mV at 10 and 50 mA cm?2, respectively. Additionally, it attains the current density of 255 mA cm?2 at the potential of 2.0 V vs. RHE, and shows long-term stability during OER. This work offers a simple and feasible pathway for the design and construct of metal dichalcogenides for green and renewable hydrogen production by electrocatalytic water splitting.

Graphical abstract
  相似文献   

20.
Qin  Yipeng  Huang  Yuhan  Li  Min  Ren  Bo  Wang  Pan  Zhong  Qidi  Liu  Chunyan 《Journal of Materials Science》2021,56(21):12412-12422

Novel thermal nanoparticles [hollow mesoporous silica nanospheres (HMSNs)–poly (N-isopropyl acrylamide-acrylic acid) PNIPAM-AA] were developed with Ag nanoparticles (AgNps) as the core, mesoporous silica nanoparticles as the layer, and thermally responsive polymers PNIPAM-AA as the shell. The AgNps had good photothermal effects, PNIPAM-AA was responsive to temperature, the combination of AgNps and PNIPAM-AA could be used as a photothermal-responsive switch for drug release, and HMSNs greatly increased the drug loading of the carrier. The samples were characterized by means of scanning electron microscopy, transmission electron microscopy, N2 adsorption–desorption, thermogravimetric analysis, Fourier transform infrared spectroscopy, and UV–Vis absorption spectra. The results showed that Ag@HMSN nanoparticles possessed a uniform diameter (330 nm), high specific surface area (822.45 m2/g), and mesoporous pore size (2.75 nm). Using ibuprofen (IBU) as a model drug, the release process was monitored under in vitro conditions to investigate its release characteristics at different temperatures. The results showed that the nanoparticles had a significant regulatory effect on IBU release.

Graphical abstract
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号